Studies on biologically important copper(II) / manganese(II) / uranyl(II) – norvaline binary complexes

Brij Bhushan Tewari


In coordination compounds studies, a knowledge of the magnitude of the stability constants of complexes is necessary for preliminary quantitative treatment. Described herein is a method that involves the use of advanced ionophoretic technique for the study of the equilibria in binary complex systems in solution. This method is based upon the migration of a spot of the metal ion on a paper strip at different pH values of background electrolyte containing 0.1 M perchloric acid and 0.01 M norvaline. A graph of pH against mobility provides information about the nature of the complexation and helps in calculating stability constants. Using this method, the stability constants of binary complexes metal(II) – norvaline have been determined to be (8.11 ± 0.02, 7.03 ± 0.09); (3.77 ± 0.11, 2.39 ± 0.07) and (7.59 ± 0.05, 6.17 ± 0.04) (log K values) for Cu(II), Mn(II) and UO2(II) complexes, respectively, at 35 ºC.


electrophoretic technique; complexation reactions; copper(II) complexes; manganese(II) complexes; uranyl(II) complexes; norvaline; stability constants

Full Text:



K. Elnekave, R. Siman-Tov, S. Ankri, Consumption of Larginine mediated by entamoeba histolytica L-arginase inhibits amoebicidal activity and nitric oxide production by activated macrophages, Parasite Immunol. 25 (11–12), 597–608 (2003).

C. S. Coleman, G. Hu, A. E. Pegg, Putrescine biosynthesis in mammalian tissues, Biochem. J. 379, 849–855 (2004).

C. Chang, J. C. Liao, L. Kuo, Macrophase arginase promotes tumor cell growth and suppresses nitric oxide – mediated tumor cytotoxicity, Can. Res. 61, 1100 – 1106 (2001).

A. Djeraba, E. Musset, N. Rooijen, P. Quere, Resistance and susceptibility to Marek’s disease, nitric oxide synthase / arginase activity balance, Veterinary Microbiol. 86 (3), 229–244 (2002).

J. Lee, J. W. Finley, J. M. Harmly, Effect of selenium fertilizer on free amino acid composition of Broccoli determined by gas chromatography with flame ionization and mass selective detection, J. Agri. Food Chem. 53, 9105–9111 (2005)

M. T. Talaue, V. Venketaraman, N. D. Connell, Arginine homeostatis in J774.1, Macrophages in the context of mycobacterium bovis BCG infection, J. Bacteriol. 188 (13), 4830 – 4840 (2006).

K. Tipton, Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers, J. Nutr. Biochem. 10(2), 89–95 (2003).

V. Kaartinen, J. C. Williams, J. Tomich, J. R. Yates, L. E. Hood, I. Mononen, Glycosapararginase from leukocytes. Inactivation and covalent modification with diazo – oxonorvaline, J. Biol. Chem. 266 (9), 5860–5869 (1991).

C. Chang, B. Zoghi, J. C. Liao, L. Kuo, The involvement of tyrosine kinases, cyclic AMP/protein Kinase A, and p38 nitrogen-activated protein kinase in IL-13- mediated Arginase I induction in macrophages, J. Immunol. 165, 2134–2141 (2000).

D. Banerjea, Some aspects on the role of metal ions in biological systems, Everyman’s Sci. 29 (6), 176–184 (1995).

B. Kozlevear, N. Lah, I. Leban, F. Pohleven, P. Segedin, Synthesis and characterization of fatty acid copper(II) carboxylates with N, N-diethylnicotinamide, Croatica Chemica Acta, 73 (3), 733–741 (2000).

S. M. Romanowski, F. Tormena, V. A. Santos, M. F. Hermann, A. S. Mangrich, Solution studies of copper(II) complexes as a contribution to the study of the active site of galactose oxidase, J. Braz. Chem. Soc. 15(6), 1–6 (2004).

E. K. Efthimiadon, H. Thomdaki, Y. Sanakis, C. P. Raptopoulou, N. Katsaros, G. Psomas, Structure and biological properties of the copper(II) complex with the quinolone antibacterial drug N-propyl-norfloxacin and 2.2’- bipysidine, J. Inorg. Biochem. 101 (1), 64–73 (2007).

L. Larabi, Y. Harek, A. Reguig, M. M. Mostafa, Synthesis, structural study and electrochemical properties of copper(II) complexes derived from benzene and ptoluenesulphonyl- hydrazones, J. Serb. Chem. Soc. 68 (2), 85–95 (2003).

N. Guskos, J. Types, G. J. Papadopoulos, M. Maryniak, K. Aidinis, The linewidths and pintegrated intensities of the d-d transitions in photoacoustic spectra of polyamine copper(II) complexes, Materials Sci. – Poland 23(4), 1–6 (2005).

C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corringan, M. W. Radomski, Nanoparticles: Pharmacological and toxicological significance, Br. J. Pharmacol. 150, 552–558 (2007).

M. Aschner, Manganese: Brain transport and emerging research needs, Environ. Health Prospect, 108 (3), 429– 432 (2000).

Q. -Y. Zhu, J. Dai, D. -X. Jia, L. -H. Cao, H. -H. Lin, Manganese(II) complexes coordinated by a new derivatives of bi pyridine, Eur. J. Inorg. Chem. 24, 4789 – 4794 (2004).

S. B. Liu, L. Perera, L. G. Pedersen, Binuclear manganese( II) complexes in biological systems, Molecular Phys. 105 (19–22), 2893–2898 (2007).

S. H. Reaney, G. L. O. Kwik – Uribe, D. R. Smith, Manganese oxidation state and its implications for toxicity, Chem. Res. Toxicol. 15 (9), 1119–1126 (2002).

S. Chitra, R. Sommalar, C. S. S. Devi, Effect of fish oil on cigarette smoking induced dyslipidemia in rats, Indian J. Pharmacol. 32, 114–119 (2000).

M. Sulkowska, E. Skrzydlewska, I. Daniszewska, Effect of cyclophosphamide – induced generation reactivate oxygen forms on ultrastructure of the liver and lung, Bull. Vet. Inst. Pulway, 46, 239–246 (2002).

H. Wickert, K. Zoar, A. Grauer, M. John, M. Zimmermann, F. Gillardon, Differential induction of protooncogene expression and cell death in ocular tissues following ultraviolet irradiation of the rat eye, Br. J. Ophthalmol. 83, 225–230 (1999).

J. L. Anderson, H. B. Spitz, J. H. Yiin, Characterization of internal exposure to enriched uranium at a former gaseous diffusion plant, Health Phys. 93 (6), 636–644 (2007).

W. E. Briner, The evolution of depleted uranium as an environmental risk factor: lessons from other metals, Int. J. Environ. Res. Public Health, 3(2), 129–135 (2006).

M. L. Albina, M. Belles, M. Gomez, D. J. Sanchez, J. L. Domingo, Influence of maternal stress on uranium – induced developmental toxicity in rats, Exp. Biol. Med. 228, 1072–1077 (2003).

L. S. Morton, C. V. Evans, G. O. Estes, Natural Uranium and Thorium distributions in podzolized soils and native blueberry, J. Environ. Quality, 31, 155–162 (2002).

D. J. Shaw, Electrophoresis, Academic Press, London pp. 99–103 (1969).

B. B. Tewari, Determination of stability constants of iron(III) and chromium(III)-nitrilotriacetate–methylcysteine mixed complexes by electrophoretic technique, Bull. Chem. Soc. Ethiop 18 (1), 29–36 (2004).

B. B. Tewari, Ionophoretic studies on mixed metal – nitrilotriacetate – penicillamine complexes, J. Chromatogr. A, 910, 181–185 (2001).

B. B. Tewari, Paper Ionophoretic technique in the study of mixed complexes, Bull. Korean Chem. Soc. 23(5), 705–707 (2002).

J. R. Blackburn, M. M. Jones, Stereoselective in the metal complex catalyzed hydrolysis of amino acid esters – III, J. Inorg. Nucl. Chem. 35, 1605–1611 (1973).

V. Jokl, Studies on complexation in solution with paper electrophoresis, J. Chromotogr. 6, 432–439 (1964).

A. E. Martell, R. M. Smith, Critical Stability Constants, Vol. 1, Amino Acids, Plenum Press, New York, 1974, p. 7.

D. D. Perrin, Stability constants of metal ion complexes, IUPAC Chemical Series NO. 22, Part B, Organic Ligands, Pergamon Press, Oxford, 1979, p. 324.



  • There are currently no refbacks.

Copyright (c) 2016 Brij Bhushan Tewari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.