Investigating structural changes of Chitosan-TiO2 and Chitosan-TiO2-ZnO-MgO hybrid films during storage by FTIR spectroscopy

Authors

  • Luis M. Anaya-Esparza 1. Tecnológico Nacional de México/Instituto Tecnológico de Tepic 2. Universidad de Guadalajara
  • José M. Ruvalcaba-Gómez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
  • Rafael Romero-Toledo Universidad de Guanajuato
  • Jorge A. Sánchez-Burgos Tecnológico Nacional de México/InstitutoTecnológico de Tepic
  • Efigenia Montalvo-González Tecnológico Nacional de México/Instituto Tecnológico de Tepic.
  • Alejandro Pérez-Larios Universidad de Guadalajara

DOI:

https://doi.org/10.20450/mjcce.2021.2396

Keywords:

functionalization, chitosan film, titanium dioxide, structural changes, storage

Abstract

This work aimed to evaluate the effect of time and two storage temperatures (25 °C and 4 °C) on the structural changes in chitosan (CS) films functionalized with titanium dioxide (TiO2) and a ternary mixed oxide-based TiO2 (TiO2-ZnO-MgO; TZM) by Fourier transform infrared (FTIR) spectroscopy and the in vitro release of TiO2 and TZM from the CS film to the medium. Changes in the FTIR spectra (mainly in the 1700 to 1250 cm–1 region) of the CS-based films during storage were dependent on the storage temperature. The film stored at 25 °C showed remarkable changes after 7 days of evaluation, indicating a dehydration process; however, films stored at 4 °C exhibited reduced changes after 21 days of storage. Moreover, the migration behavior of TiO2 (< 13%) and TZM (< 7%) from CS to the medium showed a first-order kinetic model (R2 > 0.93) in a temperature-dependent response. Further studies are needed to correlate the structural changes of CSTiO2 and CSTZM films during storage with their technological and functional properties, which could limit their potential applications.

 

Author Biographies

Luis M. Anaya-Esparza, 1. Tecnológico Nacional de México/Instituto Tecnológico de Tepic 2. Universidad de Guadalajara

1. Laboratorio Integral de Investigación en Alimentos

2. Laboratorio de Microbiología de Alimentos, Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de los Altos

Profesor-investigador

José M. Ruvalcaba-Gómez, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

Centro Nacional de Recursos Genéticos

Profesor-investigador

Rafael Romero-Toledo, Universidad de Guanajuato

Departamento de Ingeniería Química, Universidad de Guanajuato. 

Profesor-Investigador

Jorge A. Sánchez-Burgos, Tecnológico Nacional de México/InstitutoTecnológico de Tepic

Laboratorio Integral de Investigación en Alimentos

Profesor-Investigador

Efigenia Montalvo-González, Tecnológico Nacional de México/Instituto Tecnológico de Tepic.

Laboratorio Integral de Investigación en Alimentos

Profesor-Investigador

Alejandro Pérez-Larios, Universidad de Guadalajara

División de Ciencias Agropecuarias e Ingenierías, Centro Universitario de los Altos

Profesor-Investigador

References

L. M. Anaya-Esparza, Z. Villagrán-de la Mora, N. Rodrí-guez-Barajas, T. Sandoval-Contreras, K. Nuño, D. A. López-de la Mora, A. Pérez-Larios, E. Montalvo-González, Protein–TiO2: A functional hybrid composite with diversified applications, Coatings, 10, 1194 (2020). DOI: https://doi.org/10.3390/coatings10121194

R. Jovanović-Malinovska, M. Cvetkovska, S. Kuzmano-va, C. Tsvetanov, E. Winkelhausen, Immobilization of Saccharomyces cerevisiae in novel hydrogels based on hybrid networks of poly(ethylene oxide), alginate and chi-tosan for ethanol production, Maced. J. Chem. Chem. Eng., 29, 169–179 (2010).

S. H. Mir, L. A. Nagahara, T. Thundat, P. Mokarian-Tabari, H. Furukawa, A. Khosla. Review-Organic-Inorganic hybrid functional materials: An integrated plat-form for applied technologies, J. Electrochem. Soc., 165, B3137–B3156 (2018).

DOI: https://doi.org/10.1149/2.0191808jes

L. M. Anaya-Esparza, Z. Villagrán-de la Mora, J. M. Ruvalcaba-Gómez, R. Romero-Toledo, T. Sandoval-Contreras, S. Aguilera-Aguirre, E. Montalvo-González, A. Pérez-Larios, Use of titanium dioxide (TiO2) nanopar-ticles as reinforcement agent of polysaccharide-based ma-terials, Processes, 8, 1395 (2020).

DOI: https://doi.org/10.3390/pr8111395

L. M. Anaya-Esparza, J. M. Ruvalcaba-Gómez, C. I. Maytorena-Verdugo, N. González-Silva, R. Romero-Toledo, S. Aguilera-Aguirre, A. Pérez-Larios, E. Montal-vo-González. Chitosan-TiO2: A versatile hybrid compo-site, Materials, 13, 811 (2020).

DOI: 10.3390/ma13040811

B. Tanhaei, A. Z. Moghaddam, A. Ayati, F. Deymeh, M. Sillanpää, Response surface methodology approach for optimization of methyl orange adsorptive removal by magnetic chitosan nanocomposite, Maced. J. Chem. Chem. Eng., 36, 143–151 (2017).

T. P. Ivanovska, L. Petruševska-Tozi, M. D. Kostoska, N. Geškovski, A. Grozdanov, C. Stain, T. Stafilov, K. Mladenovska, Microencapsulation of Lactobacillus casei in chitosan-Ca-alginate microparticles using spray-drying method, Maced. J. Chem. Chem. Eng., 31, 115–123 (2012).

N. Todorova, M. Ilarionova, D. Todorov, Antitumor effect of new conjugates of anthracycline antibiotic car-cynomicin bound to chitosan, Maced. J. Chem. Chem. Eng., 26, 147–150 (2007).

S. Petrović, L. Rozić, B. Grbić, N. Radić, J. Dostanić, S. Stojadinović, R. Vasilić, Morphology and fractal dimen-sion of TiO2 thin films, Maced. J. Chem. Chem. Eng., 32, 309–317 (2013).

L. M. Anaya-Esparza, E. Montalvo-González, N. Gonzá-lez-Silva, M. D. Méndez-Robles, R. Romero-Toledo, E. M. Yahia, A. Pérez-Larios, Synthesis and characterization of TiO2-ZnO-MgO mixed oxide and their antibacterial ac-tivity, Materials, 12, 698 (2019).

DOI: 10.3390/ma12050698

P. Muranyi, C. Schraml, J. Wunderlich, Antimicrobial efficiency of titanium dioxide-coated surfaces, J. Appl. Microbiol., 108, 1966–1973 (2010).

DOI: https://doi.org/10.1111/j.1365-2672.2009.04594.x

M. P. Blanco-Vega, M. Hinojosa-Reyes, A. Hernández-Ramírez, J. L. Guzmán-Mar, V. Rodríguez-González, L. Hinojosa-Reyes, Visible light photocatalytic activity of sol-gel Ni doped TiO2 on p-arsanilic acid degradation, J. Sol-Gel Sci. Technol., 85, 723–731 (2018).

DOI: https://doi.org/10.1007/s10971-018-4579-0

H. A. Sharif, A. A. E. Rasha, Z. Al-B. Ramia, Titanium dioxide content in foodstuffs from the Jordanian market: Spectrophotometric evaluation of TiO2 nanoparticles, Int. J. Food Res. J., 22, 1024–1029 (2015).

S. S. Behera, U. Das, A. Kumar, A. Bissoyi, A. K. Singh, Chitosan/TiO2 composite membrane improves pro-liferation and survival of L929 fibroblast cells: Applica-tion in wound dressing and skin regeneration, Int. J. Biol. Macromol., 98, 329–340 (2017).

DOI: 10.1016/j.ijbiomac.2017.02.017

U. Siripatrawan, P. Kaewklin, Fabrication and characteri-zation of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packag-ing, Food Hydrocoll., 84, 125–134 (2018).

DOI: https://doi.org/10.1016/j.foodhyd.2018.04.049

S. Wu, J. Kan,X. Dai, X. Shen, K. Zhang, M. Zhu, Ter-nary carboxymethyl chitosan-hemicellulose-nanosized TiO2 composite as effective adsorbent for removal of heavy metal contaminants from water, Fibers Polym., 18, 22–32 (2017).

DOI: https://doi.org/10.1007/s12221-017-6928-y

L. N. Pincus, F. Melnikov, J. S. Yamani, J. B. Zimmer-man, Multifunctional photoactive and selective adsorbent for arsenite and arsenate: Evaluation of nanotitanium di-oxide-enabled chitosan cross-linked with copper, J. Haz-ard. Mater., 358, 145–154 (2018).

DOI: https://doi.org/10.1016/j.jhazmat.2018.06.033

A. Chen, G. Zang, G. Chen, X. Hu, M. Yan, S. Guan, C. Shang, L. Lu, Z. Zou, G. Xie, Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for sim-ultaneous removal of cadmium and 2,4-dichlorophenol, Chem. Eng. J., 191, 85–94 (2012).

DOI: https://doi.org/10.1016/j.cej.2012.02.071

R. Saravanan, J. Aviles, F. Gracia, E. Mosquera, V. K. Gupta, Crystallinity and lowering band gap induced visi-ble light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites, Int. J. Biol. Macromol., 109, 1239–1245 (2018).

DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.125

Y. Haldorai, J. J. Shim, Novel chitosan-TiO2 nanohybrid: Preparation, characterization, antibacterial, and photocata-lytic properties, Polym. Compos., 1, 327–333 (2014). DOI: https://doi.org/10.1002/pc.22665

M. Safari, M. Ghiaci, M. Jafari-Asl, A. A. Ensafi, Nano-hybrid organic-inorganic chitosan/dopamine/TiO2 compo-sites with controlled drug-delivery properties, Appl. Surf. Sci., 342, 26–33 (2015).

DOI: https://doi.org/10.1016/j.apsusc.2015.03.028

K. J. Huang, J. Li, Y. Wu, Y. M. Liu, Amperometric immunobiosensor for α-fetoprotein using Au nanoparti-cles/chitosan/TiO2–graphene composite based platform, Biolectrochem., 90, 18–23 (2013).

DOI: https://doi.org/10.1016/j.bioelechem.2012.10.005

P. Kaewklin, U. Siripatrawan, A. Suwanagul, Y. S. Lee, Active packaging from chitosan-titanium dioxide nano-composite film for prolonging storage life of tomato fruit, Biol. Macromol., 112, 523–529 (2018).

DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.124

L. Qu, G. Chen, S. Dong, Y. Huo, Z. Yin, S. Li, Y. Chen, Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2, Ind. Crop. Prod., 130, 450–458 (2019).

DOI: https://doi.org/10.1016/j.indcrop.2018.12.093

G. Xiao, Y. Zhao, L. Li, J. O. Pratt, H. Su, T. Tan, Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction, Nanotechnol., 29, 1–9 (2018).

L. M. Anaya-Esparza, N. González-Silva, E. M. Yahia, O. A. González-Vargas, E. Montalvo-González, A. Pé-rez-Larios, Effect of TiO2-ZnO-MgO mixed oxide on mi-crobial growth and toxicity against Artemia salina, Nanomaterials, 9, 992 (2019).

DOI: https://doi.org/10.3390/nano9070992

P. Cazón, G. Velázquez, J. A. Ramírez, M. Vázquez, Polysaccharide-based films and coatings for food packag-ing: A review, Food Hydrocoll., 68, 136–148 (2017). DOI: https://doi.org/10.1016/j.foodhyd.2016.09.009

G. Kerch, V. Korkhov, Effect of storage time and temper-ature on structure, mechanical and barrier properties of chitosan-based films, Eur. Food Res. Technol., 232, 17–22 (2011).

DOI: https://doi.org/10.1007/s00217-010-1356-x

P. Fernández-Saiz, J. M. Lagarón, M. J. Ocio, Optimiza-tion of the film-forming and storage conditions of chi-tosan as an antimicrobial agent, J. Agric. Food Chem. 57, 3298–3307 (2009).

DOI: https://doi.org/10.1021/jf8037709

J. Díaz-Visurraga, M. F. Meléndrez, A. García, M. Paulraj, G. Cárdenas, Semitransparent chitosan-TiO2 nanotubes composite film for food package applications, J. Appl. Polym. Sci., 116, 3503–3515 (2009).

DOI: https://doi.org/10.1002/app.31881

H. Yong, X. Wang, R. Bai, Z. Miao, X. Zhang, J. Liu, Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix, Food Hydrocoll., 90, 216−224 (2019).

DOI: https://doi.org/10.1016/j.foodhyd.2018.12.015

A. E. Wiacek, A. Gozdecka, M. Jurak, Physicochemical characteristics of chitosan-TiO2 biomaterial. I. Stability and swelling properties, Ind. Eng. Chem. Res., 57, 1859–1870 (2018).

DOI: https://doi.org/10.1021/acs.iecr.7b04257

X. Zhang, Y. Liu, H. Yong, Y. Qin, J. Liu, J. Liu, De-velopment of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract, Food Hydrocoll., 94, 80–92 (2019). DOI: https://doi.org/10.1016/j.foodhyd.2019.03.009

C. Branca, G. D. Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide nanocomposite interactions: a FTIR-ATR study on chitosan and chi-tosan/clay films, Polymer, 99, 614–622 (2016).

DOI: https://doi.org/10.1016/j.polymer.2016.07.086

S. Hajji, I. Younes, O. Ghorbel-Bellaaj, R. Hajji, M. Rinaudo, M. Nasri, K. Jellouli, Structural differences be-tween chitin and chitosan extracted from three different marine sources, Int. J. Biol. Macromol., 65, 298–306 (2014).

DOI: https://doi.org/10.1016/j.ijbiomac.2014.01.045

D. Timotious, Y. Kusumastuti, N. A. C. Imani, Roch-madi, N. R. E. Putri, S. S. Rahayu, S. K. Wirawan, M. Ikawati, Kinetics of drug release profile from maleic an-hydride-grafted chitosan film, Matter. Res. Exp., 7, 046403 (2020).

DOI: https://doi.org/10.1088/2053-1591/ab80d9

T. Lefevre, M. Subirade, M. Pézolet, Molecular descrip-tionof the formation and structure of plasticized globular protein films, Biomacromol., 6, 3209–3219 (2005).

DOI: https://doi.org/10.1021/bm050540u

K. A. M. Amin, M. I. H. Panhius, Reinforced materials based on chitosan, TiO2 and Ag composites, Polymers 4, 590–599 (2012).

DOI: https://doi.org/10.3390/polym4010590

W. Li, K. Zheng, H. Chen, S. Feng, W. Wang, C. Qin, Influence of nanotitanium dioxide and clove oil on chi-tosan-starch film characteristics, Polymers 11, 1418 (2019). DOI: https://doi.org/10.3390/polym11091418

M. Taspika, R. W. Desiati, M. Mahardika, E. Sugiarti, H. Abral, Influence of TiO2/Ag particles on the properties of chitosan film, Adv. Nat. Sci. Nanosci. Nanotechnol., 11, 015017 (2020).

DOI: https://doi.org/10.1088/2043-6254/ab790e

T. Ikhlef-Taguelmimt, A. Hamiche, I. Yahiaoui, T. Ben-dellali, H. Lebik-Elhadi, H. Ait-Amar, F. Aissani-Benissad, Tetracycline hydrochloride degradation by het-erogeneous photocatalysis using TiO2(P25) immobilized in biopolymer (Chitosan) under UV irradiation, Water Sci. Technol., 82, 1570–1578 (2020).

DOI: https://doi.org/10.2166/wst.2020.432

F. H. A. El-Kader, A. M. Shehap, A. A. Bakr, O.T. Hussain, Characterization of clay/chitosan nanocompo-sites and their use for adsorption on Mn(ΙΙ) from aqueous solution, Int. J. Sci. Eng. Appl., 4, 174–185 (2015). DOI: 10.7753/ijsea0404.1004

L. Zhang, W. Xia, X. Liu, W. Zhang, Synthesis of titani-um cross-linked chitosan composite for efficient adsorp-tion and detoxification of hexavalent chromium from wa-ter, J. Mater. Chem. A. 3, 331–340 (2015).

DOI: https://doi.org/10.1039/C4TA05194G

Q. Xiao, X. Gu, S. Tan, Drying process of sodium algi-nate films studied by two-dimensional correlation ATR-FTIR spectroscopy, Food Chem., 164, 179–184 (2014). DOI: https://doi.org/10.1016/j.foodchem.2014.05.044

S. Afzal, E. M. Samsudin, L. K. Mun, N. M. Julkapli, S. B. A. Hamid, Room temperature synthesis of TiO2 sup-ported chitosan photocatalyst: Study on physicochemical and adsorption photo-decolorization properties, Mater. Res. Bull., 86, 24–29 (2017).

DOI: https://doi.org/10.1016/j.materresbull.2016.09.028

S. A. Oleyaei, Y. Zahedi, B. Ghanbarzadeh, A. A. Mo-ayedi, Modification of physicochemical and thermal prop-erties of starch films by incorporation of TiO2 nanoparti-cles, Int. J. Biol. Macromol., 89, 256–264 (2016). DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.078

D. Arikal, A. Kallingal, Photocatalytic degradation of azo and anthraquinone dye using TiO2/MgO nanocomposite immobilized chitosan hydrogels, Environ. Technol., 1, 1–14 (2019).

DOI: https://doi.org/10.1080/09593330.2019.1701094

J. Vidic, S. Stankic, F. Haque, D. Ciric, R. Le Goffic, A. Vidy, J. Jullipe, B. Delmas, Selective antibacterial effects of mixed ZnMgO nanoparticles, J. Nanopat. Res., 15, 1595 (2013).

DOI: https://doi.org/10.1007/s11051-013-1595-4

H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao, G. Zeng, Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation, Desalination, 286, 41–48 (2012).

DOI: https://doi.org/10.1016/j.desal.2011.10.036

X. Wei, Q. Li, H. Hao, H. Yang, Y. Li, T. Sun, X. Li, Preparation, physicochemical and preservation properties of Ti/ZnO/in situ SiOx chitosan composite coatings, J. Sci. Food Agric., 100, 570–577 (2020).

DOI: https://doi.org/10.1002/jsfa.10048

B. D. Malhorta, A. Kaushik, Metal oxide-chitosan based nanocomposite for cholesterol biosensor, Thin Solid Films, 518, 614–620 (2009).

DOI: https://doi.org/10.1016/j.tsf.2009.07.036

Z. Osman, A. K. Arof, FTIR studies of chitosan acetate based polymer electrolytes, Electrochim. Acta, 48, 993–999 (2003).

DOI: https://doi.org/10.1016/S0013-4686(02)00812-5

H. M. Kam, E. Khor, L.Y. Lim, Storage of partially deacetylated chitosan films, J. Biomed. Mater. Res., 1999, 48, 881–888 (2002).

DOI:https://doi.org/10.1002/(SICI)1097-4636(1999) 48:6<881::AID-JBM18>3.0.CO;2-2

A. A. Mejenom, M. N. Hafiza, M. I. N. Isa, X-ray dif-fraction and infrared spectroscopic analysis of solid bi-opolymer electrolytes based on dual blend carboxymethyl cellulose-chitosan doped with ammonium bromide, ASM Sci. J., 1, 37–46 (2018).

G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, L. Grondahl, Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS, Biomacromol., 8, 2533–2541 (2007). DOI: https://doi.org/10.1021/bm070014y

S. Rivero, L. Damonte, M. A. García, A. Pinotti, An insight into the role of glycerol in chitosan films. Food Biophys., 11, 117–127 (2016).

DOI: https://doi.org/10.1007/s11483-015-9421-4

J. A. González-Calderon, J. Vallejo-Montesinos, H. N. Martíez-Martínez, R. Cerecero-Enríquez, L. López-Zamora, Effect of chemical modification of titanium diox-ide particles via silanization under properties of chi-tosan/potato-starch films, Mex. J. Chem. Eng., 18, 913–927 (2019).

DOI:https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/GonzalezC

M. Stevanović, M. Djošić, A. Janković, V. Kojić, M. Vukasinović-Sekulić, J. Stojanović, J. Odović, M. C. Sa-kač, R. K. Yop, V. Misković-Stanković, Antibacterial graphene-based hydroxyapatite/chitosan coating with gen-tamicin for potential applications in bone tissue engineer-ing, J. Biomed. Mater. Res., 108, 2175–2189 (2020). DOI: https://doi.org/10.1002/jbm.a.36974

K. K. Dash, N. A. Ali, D. Das, D. Mohanta, Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications, Int. J. Biol. Macromol., 139, 449–458 (2019).

DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.193

A. Yamamoto, J. Kawada, T. Yui, K. Ogawa, Conforma-tional behavior of chitosan in the acetate salt: An X-ray study, Biosci. Biotechnol. Biochem., 61, 1230–1232 (1997). DOI: https://doi.org/10.1271/bbb.61.1230

N. M. Vicentini, N. Dupuy, M. Leitzelman, M. P. Cereda, P. J. A. Sobral, Prediction of cassava starch edi-ble film properties by chemometric analysis of infrared spectra, Spectrosc. Lett. Int. J. Rapid Commun., 38, 749–767 (2005).

DOI: http://dx.doi.org/10.1080/00387010500316080

H. H. A. Sherif, S. K. H. Khalil, A. G. Hegazi, W. A. Khalil, M. A. Moharram, Factors affecting the antibacteri-al activity of chitosan-silver nanocomposite, IET Nanobi-otechnol., 11, 731–737 (2017).

DOI: 10.1049/iet-nbt.2016.0249

J. T. Martins, M. A. Cerqueira, A. I. Bourbon, A. C. Pinheiro, B. W. S. Souza, A. A. Vicente, Synergistic ef-fects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof, Food Hydrocoll., 29, 280–289 (2012).

DOI: https://doi.org/10.1016/j.foodhyd.2012.03.004

J. M. Lagarón, P. Fernández-Saiz, M. J. Ocio, Using ATR-FTIR spectroscopy to design active antimicrobial food packaging structures based on high molecular weight chitosan polysaccharide, J. Agric. Food Chem., 55, 2554–2562 (2007).

DOI: https://doi.org/10.1021/jf063110j

Z. Lian, Y. Zhang, Y. Zhao, Nano-TiO2 particles and high hydrostatic pressure treatment for improving func-tionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants, Innov. Food Sci. Emerg. Technol., 33, 145–153 (2016).

DOI: https://doi.org/10.1016/j.ifset.2015.10.008

M. P. Paarakh, P. A. Jose, C. M. Setty, G. V. P. Christoper, Release kinetics-concepts and applications, Int. J. Pharm. Res. Technol., 8, 12–20 (2018).

M. Alizadeh-Sani, E. Mohammadian, D. J. McClements, Eco-friendly active packaging consisting of nanostruc-tured biopolymer matrix reinforced with TiO2 and essen-tial oil: Application for preservation of refrigerated meat, Food Chem., 322, 126782 (2020).

DOI: https://doi.org/10.1016/j.foodchem.2020.126782

Downloads

Published

2021-11-26

How to Cite

Anaya-Esparza, L. M., Ruvalcaba-Gómez, J. M., Romero-Toledo, R., Sánchez-Burgos, J. A., Montalvo-González, E., & Pérez-Larios, A. (2021). Investigating structural changes of Chitosan-TiO2 and Chitosan-TiO2-ZnO-MgO hybrid films during storage by FTIR spectroscopy. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 197–211. https://doi.org/10.20450/mjcce.2021.2396

Issue

Section

Biotechnology