Trinuclear silver(I) complex of non-steroidal anti-inflammatory drug naproxen: Synthesis, characterization, and in vitro cytotoxicity


  • Sema Caglar Erzincan Binali Yıldırım University
  • Ahmet Altay Erzincan Binali Yıldırım University
  • Betül Harurluoğlu Erzincan Binali Yıldırım University
  • Bulent Caglar Erzincan Binali Yıldırım University



silver(I) complex, naproxen, 3-picoline, cytotoxicity, cell culture


Herein, a new silver(I) complex with the non-steroidal anti-inflammatory drug naproxen and nitrogen donor 3-picoline ligands was synthesized, characterized, and subsequently tested for its cytotoxicity against different types of cancer cell lines. Elemental analysis, Fourier transform infrared spectroscopy, thermal, and proton nuclear magnetic resonance techniques showed that the molecular formula of the prepared complex is bis(3-picoline)tris(m-naproxenato)trisilver(I) and naproxen ligands bind to silver ions in a bridging bidentate mode. 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) results revealed that silver salts and naproxen alone showed quite weak cytotoxic activity against human breast adenocarcinoma (MDA-MB-453), lung adenocarcinoma (A-549), and colorectal adenocarcinoma (HT-29) cell lines (IC50 > 250 µM), whereas the complex displayed dose dependent cytotoxicity against the aforementioned cell lines. The highest cytotoxicity was observed on MDA-MB-453 cells with an IC50 value of 11.73 µM. Moreover, the complex showed higher selectivity against the cancer cell lines compared to fibroblast 3T3-L1 cells. This study provides preliminary scientific data on the complex for further elucidation of its anticancer mechanism of action.

Author Biographies

Sema Caglar, Erzincan Binali Yıldırım University

Department of Chemistry, Faculty of Arts and Sciences, 24100 Erzincan, Turkey

Prof. Dr.

Ahmet Altay, Erzincan Binali Yıldırım University

Department of Chemistry, Faculty of Arts and Sciences, 24100 Erzincan, Turkey

Assoc. Prof. Dr


B. Rosenberg, Cisplatin: Its History and Possible Mechanisms of Action, Academic Press, Inc. 1980. DOI:10.1016/b978-0-12-565050-2.50006-1.

B. T. Benedetti, E. J. Peterson, P. Kabolizadeh, A. Martínez, R. Kipping, N. P. Farrell, Effects of noncovalent platinum drug-protein interactions on drug efficacy: Use of fluorescent conjugates as probes for drug metabolism, Mol. Pharm. 8, 940–948 (2011). DOI:10.1021/mp2000583.

A. Bhargava, U. N. Vaishampayan, Satraplatin: Leading the new generation of oral platinum agents, Expert Opin. Investig. Drugs. 18, 1787–1797 (2009).


M. Frezza, S. Hindo, D. Chen, A. Davenport, S. Schmitt, D. Tomco, Q. Ping Dou, Novel metals and metal complexes as platforms for cancer therapy, Curr. Pharm. Des. 16, 1813–1825 (2010).


T. C. Karlenius, K. F. Tonissen, Thioredoxin and cancer: A role for thioredoxin in all states of tumor oxygenation, Cancers (Basel). 2, 209–232 (2010).


A. Bindoli, M. Pia, G. Scutari, C. Gabbiani, A. Casini, L. Messori, Thioredoxin reductase : A target for gold compounds acting as potential anticancer drugs, Coord. Chem. Rev. 253, 1692–1707 (2009).


A. Gupte, R. J. Mumper, Elevated copper and oxidative stress in cancer cells as a target for cancer treatment, Cancer Treat. Rev. 35, 32–46 (2009).


C. Monneret, Platinum anticancer drugs. From serendipity to rational design, Ann. Pharm. Fr. 69, 286–295 (2011).


T. C. Johnstone, K. Suntharalingam, S. J. Lippard, The next generation of platinum drugs: Targeted Pt(II) agents, Nanoparticle Delivery, and Pt(IV) prodrugs, (2016). DOI:10.1021/acs.chemrev.5b00597.

Q. Mi, Y. Ma, X. Gao, R. Liu, P. Liu, Y. Mi, X. Fu, 2-Deoxyglucose conjugated platinum(II) complexes for targeted therapy : design, synthesis, and antitumor activity, J. Biomol. Struct. Dyn. 1102, 2339–2350 (2016). DOI:10.1080/07391102.2015.1114972.

M. Pedro, M. Mara, C. Lidia, Organometallic compounds in cancer therapy: Past lessons and future directions, Bentham Sci. Publ. 14, 1199–1214 (2014).

R. A. Haque, S. Budagumpi, H. Z. Zulikha, M. B. Khadeer, A. M. S. Abdul, Silver(I)-N-heterocyclic carbene complexes of nitrile-functionalized imidazol-2-ylidene ligands as anticancer agents, Inorg. Chem. Commun. 44, 128–133 (2014).


S. Li, S. Zhang, X. Jin, X. Tan, J. Lou, X. Zhang, Y. Zhao, Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mito¬chondrial pathway, Eur. J. Med. Chem. 86, 1–11 (2014). DOI:10.1016/j.ejmech.2014.08.052.

C. N. Bantia, A. G. Hatzidimitriou, N. Kourkoumelis, S. K. Hadjikakou, Diclofenac conjugates with biocides through silver(I) ions (CoMeD's); Development of a reliable model for the prediction of anti-proliferation of NSAID's-silver formulations, J. Inorg. Biochem, 194, 7–18 (2019).

DOI: https://

M. Zampakou, A. G. Hatzidimitriou, N. Athanasios, G. Psomas, Neutral and cationic manganese(II)– diclofenac complexes : structure and biological evaluation, J. Coord. Chem. 68, 4355–4372 (2015).


J. I. Johnsen, M. Lindskog, F. Ponthan, I. Pettersen, NSAIDs in neuroblastoma therapy, Cancer Lett. 228, 195–201 (2005). DOI:10.1016/j.canlet.2005.01.058.

P. N. P. Rao, E. E. Knaus, T. P. Road, L. Jolla, Evolution of nonsteroidal anti-inflammatory cyclo¬oxygenase (COX) inhibition and beyond drugs (NSAIDs):, J. Pharm. Sci. 11, 81–110 (2008).

R. Basha, S. Ahmad, S. Safe, J. L. Abbruzzese, Therapeutic applications of NSAIDS in cancer : Special emphasis on tolfenamic acid, Front. Biosci. 3, 797–805 (2011).

L. Gasparini, E. Ongini, G. Wenk, Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease : old and new mechanisms of action, J. Neurochem. 91, 521–536 (2004).


W. K. K. Wu, J. J. Yiu Sung, C. W. Lee, J. Yu, C. H. Cho, Cyclooxygenase-2 in tumorigenesis of gastrointes-tinal cancers: An update on the molecular mechanisms, Cancer Lett. 295, 7–16 (2010).


K. Schrör, Pharmacology and cellular/molecular mecha-nisms of action of aspirin and non-aspirin NSAIDs in colorectal cancer, Best Pract. Res. Clin. Gastroenterol. 25, 473–484 (2011). DOI:10.1016/j.bpg.2011.10.016.

A. Tarushi, Z. Kara, J. Kljun, I. Turel, G. Psomas, A. N. Papadopoulos, D. P. Kessissoglou, Antioxidant capacity and DNA-interaction studies of zinc complexes with a non-steroidal anti-inflammatory drug, mefenamic acid, J. Inorg. Biochem, 128, 85–96 (2013).


P. Tsiliki, F. Perdih, I. Turel, G. Psomas, Structure, DNA- and albumin-binding of the manganese(II) complex with the non-steroidal antiinflammatory drug niflumic acid, Polyhedron, 53, 215–222 (2013).


T. Palacios-hernández, H. Höp, J. L. Sánchez-salas, E. González-Vergara, A. Pérez-Benítez, In vitro antibacterial activity of meclofenamate metal complexes with Cd(II), Pb(II), Co(II), and Cu(II). [Cd(C14H10NO2Cl2)2∙(CH3OH)]n and [Cu(C14H10NO2Cl2)2(C5H5N)2]. J. Inorg. Biochem, 139, 85–92 (2014). DOI:10.1016/j.jinorgbio.2014.06.008.

Y. C. Chu, T. T. Wang, L. J. Wang, Q. Y. Luo, R. Jia, T. C. Hong, X. M. Wang, H. L. Zhu, Synthesis, charac-terization, and biological evaluation of a novel Zn(II)-naproxen complex, Polyhedron. 163, 71–76 (2019). DOI:10.1016/j.poly.2019.01.040.

A. A. Khandar, Z. Mirzaei-Kalar, N. Shahabadi, S. Hadidi, H. Abolhasani, S. A. Hosseini-Yazdi, A. Jouyban, Antimicrobial, cytotoxicity, molecular modeling and DNA cleavage/binding studies of zinc-naproxen complex: switching DNA binding mode of naproxen by coordination to zinc ion, J. Biomol. Struct. Dyn. 1–13 (2020). DOI:10.1080/07391102.2020.1854858.

B. Tang, J. Wang, Q. Wang, Y. Xiao, Y. Huang, X. Liao, H. Li, Calcium(II)–naproxen complex: Synthesis, characterization, and interaction with human serum albumin, Spectrosc. Lett. 49, 404–412 (2016).


M. Zampakou, N. Rizeq, V. Tangoulis, A. N. Papadopoulos, F. Perdih, I. Turel, G. Psomas, Manganese(II) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Structure and biological perspectives, Inorg. Chem. 53, 2040–2052 (2014). DOI:10.1021/ic4025487.

M. S. Hasan, N. Das, A detailed in vitro study of naproxen metal complexes in quest of new therapeutic possibilities, Alexandria J. Med., 53, 157–165 (2017). DOI:10.1016/j.ajme.2016.06.003.

S. Hasan, N. Das, Z. Al Mahmud, S. M. A. Rahman, Pharmacological evaluation of naproxen metal complexes on antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties, Adv Pharmacol Sci., 2016, 1–7 (2016).


S. Hasan, R. Kayesh, F. Begum, S. M. A. Rahman, Transition metal complexes of naproxen : synthesis, characterization, forced degradation studies, and analytical method verification, J Anal Methods Chem. 2016, 1–10 (2016). DOI:10.1155/2016/3560695.

M. Akter, S. K. Saha, S. M. A. Rahman, Gastroentero-histopathology studies of synthesized naproxen esters in young healthy Sprague-Dawley Rat Model, J. Pharm. Sci .2, 49–53 (2015).

A.Szorcsik, L. Nagy, J. Sletten, G. Szalontai, E. Kamu, T. Fiore, L. Pellerito, E. Kalman Preparation and structural studies on dibutyltin(IV) complexes with pyridine mono- and dicarboxylic acids, J. Org. Chem. 689, 1145–1154 (2004).

DOI: 10.1016/j.jorganchem.2003.11.040.

A. Altay, H. Tohma, L. Durmaz, Preliminary phyto-chemical analysis and evaluation of in vitro antioxidant, antiproliferative, antidiabetic, and anticholinergics effects of endemic Gypsophila taxa from Turkey, J. Food Biochem. 43, 1–11 (2019). DOI:10.1111/jfbc.12908.

İ. Yapıcı, A. Altay, B. Öztürk Sarıkaya, M. Korkmaz, A. Atila, İ. Gülçin, E. Köksal, In vitro antioxidant and cytotoxic activities of extracts of endemic tanacetum erzincanense together with phenolic content by LC-ESI-QTOF-MS, Chem. Biodivers., 18 (2021).


A. Altay, S. Celep, A. E. Yaprak, I. Baskose, F. Bozoglu, Glassworts as Possible anticancer agents against human colorectal adenocarcinoma cells with their nutritive, antioxidant and phytochemical profiles, Chem. Biodivers., 14, (2017).


N. Miura, Y. Shinohara, Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells, Biochem. Biophys. Res. Commun. 390, 733–737 (2009). DOI:10.1016/j.bbrc.2009.10.039.

C. N. Banti, S. K. Hadjikakou, Non-steroidal anti-inflammatory drugs (NSAIDs) in metal complexes and their effect at the cellular level, Eur. J. Inorg. Chem. 2016, 3048–3071 (2016). DOI:10.1002/ejic.201501480.

X. Totta, A. A. Papadopoulou, A. G. Hatzidimitriou, A. Papadopoulos, G. Psomas, Synthesis, structure and biological activity of nickel(II) complexes with mefenamato and nitrogen-donor ligands, J. Inorg. Biochem. 145, 79–93 (2015).


L. Giovagnini, C. Marzano, F. Bettio, D. Fregona, Mixed complexes of Pt(II) and Pd(II) with ethylsarcosinedithiocarbamate and 2-/3-picoline as antitumor agents, J. Inorg. Biochem. 99, 2139–2150 (2005). DOI:10.1016/j.jinorgbio.2005.07.016.

A. Altay, S. Caglar, B. Caglar, Z. S. Sahin, Novel silver(I) complexes bearing mefenamic acid and pyridine derivatives: Synthesis, chemical characterization and in vitro anticancer evaluation, Inorganica Chim. Acta. 493, 61–71 (2019). DOI:10.1016/j.ica.2019.05.008.

A. Altay, S. Caglar, B. Caglar, O. Sahin, Synthesis, structural, thermal elucidation and in vitro anticancer activity of novel silver(I) complexes with non-steroidal anti-inflammatory drugs diclofenac and mefenamic acid including picoline derivatives, Polyhedron, 151, 160–170 (2018). DOI:10.1016/j.poly.2018.05.038.

B. Harurluoglu, A. Altay, S. Caglar, E. Kubra, K. Yeniceri, B. Caglar, Z. S. S, Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action, Polyhedron, 202 (2021). DOI:10.1016/j.poly.2021.115189.

A. Altay, S. Caglar, B. Caglar, Silver(I) complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines, Arch. Physiol. Biochem., 1–11 (2019).


S. Caglar, A. Altay, In vitro anticancer activity of novel Co(II) and Ni(II) complexes of non-steroidal anti-inflammatory drug niflumic acid against human breast adenocarcinoma MCF-7 Cells, Cell Biochem. Biophys. (2021). DOI:10.1007/s12013-021-00984-z.

D. Mahendiran, R. S. Kumar, A. K. Rahiman, Heteroleptic silver(I) complexes with 2,2′:6′,2″-terpyridines and naproxen: DNA interaction, EGFR/VEGFR2 kinase, growth inhibition and cell cycle arrest studies, Mater. Sci. Eng. C. 76, 601–615 (2017).


S. Bharathi, D. Mahendiran, R. S. Kumar, H. J. Choi, M. Gajendiran, K. Kim, A. K. Rahiman, Silver(I) metallodrugs of thiosemicarbazones and naproxen: biocompatibility, in vitro anti-proliferative activity and in silico interaction studies with EGFR, VEGFR2 and LOX receptors, Toxicol. Res. 9, 28–44 (2020). DOI:10.1093/TOXRES/TFAA001.

J. Chang, G. Wang, Nonsteroidal anti-inflammatory drug effects on osteoblastic cell cycle, cytotoxicity, and cell death, Connect. Tissue Res. 46, 200–210 (2005). DOI:10.1080/03008200500344025.

V. Erfani-Мoghadam, M. Aghaei, A. Soltani, A. Ravaghi, M. Cordani, S. Shirvani, S. Moazen, H. Balakheyli, ST8 micellar/niosomal vesicular nanoformulation for delivery of naproxen in cancer cells : Physicochemical characterization and cytotoxicity evaluation, J. Mol. Struct. 1211 (2020).


M. Ramar, B. Manikandan, P. N. Marimuthu, T. Raman, A. Mahalingam, P. Subramanian, S. Karthick, A. Munusamy, Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 140 223–228 (2015).


K. Kawata, M. Osawa, S. Okabe, In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells, Environ. Sci. Technol. 43, 6046–6051 (2009). DOI:10.1021/es900754q.




How to Cite

Caglar, S., Altay, A., Harurluoğlu, B., & Caglar, B. (2021). Trinuclear silver(I) complex of non-steroidal anti-inflammatory drug naproxen: Synthesis, characterization, and in vitro cytotoxicity. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 171–180.



Inorganic Chemistry