One-pot electrochemical fabrication of SnO-reduced graphene oxide electrodes for amperometric sensing of dopamine

Authors

  • Hülya Öztürk Doğan Atatürk University
  • Bingül Kurt Urhan Atatürk University
  • Tuba Öznülüer Özer Atatürk University
  • Ümit Demir Department of Chemistry, Sciences Faculty, Gebze Technical University, Kocaeli

DOI:

https://doi.org/10.20450/mjcce.2021.2427

Keywords:

dopamine, graphene, reduced graphene oxide, tin oxide

Abstract

In this study, the preparation of tin(II) oxide/reduced graphene oxide (SnO/rGO) hybrid electrodes was simultaneously performed by a one-pot electrodeposition process for the first time by using a single cell. The morphological and structural characterizations of SnO/rGO were performed by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Additionally, the electrocatalytic activities of the electrode materials for the determination of DA were tested by the linear sweep voltammetry technique. Furthermore, the amperometric sensing of DA was carried out with a detection limit of 0.32 µM. The results suggest that our fabricated biosensor exhibited an ultrahigh sensitivity, low detection limit, and excellent selectivity.

References

Ş. Sağlam, A. Arman, A. Üzer, B. Ustamehmetoğlu, E. Sezer, R. Apak, Selective electrochemical determina-tion of dopamine with molecularly imprinted poly(carbazole-co-aniline) electrode decorated with gold nanoparticles, Electroanalysis, 32, 964−967 (2020).

DOI: https://doi.org/10.1002/elan.201900646.

R. Zhang, G. Di Jin, D. Chen, X. Y. Hu, Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode, Sensors and Actua-tors B: Chem. 138, 174−181 (2009).

DOI: https://doi.org/10.1016/j.snb.2008.12.043.

B. Habibi, M. Jahanbakhshi, M. H. Pournaghi-Azar, Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry, Electro-chim. Acta., 56, 2888–2894 (2011).

DOI: https://doi.org/10.1016/j.electacta.2010.12.079.

O. Arrigoni, M. C. De Tullio, Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta - Gen. Subj. 1569, 1−9 (2002).

DOI: https://doi.org/10.1016/S0304-4165(01)00235-5.

E. Fazio, S. Spadaro, M. Bonsignore, N. Lavanya, C. Sekar, S. G. Leonardi, G. Neri, F. Neri, Molybdenum oxide nanoparticles for the sensitive and selective de-tection of dopamine, J. Electroanal. Chem. 814, 91−96 (2018). DOI: https://doi.org/10.1016/j.jelechem.2018.02.051.

S. Lakard, I. A. Pavel, B. Lakard, Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors, 11, 179 (2021).

DOI: https://doi.org/10.3390/bios11060179.

M. A. Fotopoulou, P. C. Ioannou, Post-column terbi-um complexation and sensitized fluorescence detec-tion for the determination of norepinephrine, epineph-rine and dopamine using high-performance liquid chromatography, Anal. Chim. Acta, 462, 179−185 (2002).

DOI: https://doi.org/10.1016/S0003-2670(02)00312-4.

J. J. Feng, H. Guo, Y. F. Li, Y. H. Wang, W. Y. Chen, A. J. Wang, Single molecular functionalized gold na-noparticles for hydrogen-bonding recognition and col-orimetric detection of dopamine with high sensitivity and selectivity, ACS Appl. Mater. Interfaces, 5, 1226–1231 (2013). DOI: https://doi.org/10.1021/am400402c.

H. Ö. Doğan, B. K. Urhan, E. Çepni, M. Eryiğit, Sim-ultaneous electrochemical detection of ascorbic acid and dopamine on Cu2O/CuO/electrochemically re-duced graphene oxide (CuxO/ERGO)-nanocomposite-modified electrode, Microchem. J., 150, 104157 (2019).

DOI: https://doi.org/10.1016/j.microc.2019.104157.

K. Jackowska, P. Krysiński, New trends in the electro-chemical sensing of dopamine, Anal. Bioanal. Chem. 405, 3753–3771n (2013).

DOI: https://doi.org/10.1007/s00216-012-6578-2.

M. Kwak, S. Lee, D. Kim, S. K. Park, Y. Piao, Facile synthesis of Au-graphene nanocomposite for the se-lective determination of dopamine, J. Electroanal. Chem. 776, 66–73 (2016).

DOI: https://doi.org/10.1016/j.jelechem.2016.06.047.

P. Ramu, S. P. Vimal, P. Suresh, U. Saravanakumar, V. Sethuraman, S. Anandhavelu, electrochemically deposited porous graphene−polypyrrole−polyphenol oxidase for dopamine biosensor, Electroanalysis, 33, 774–780 (2020). DOI: https://doi.org/10.1002/elan.202060400.

A. Kutluay, M. Aslanoglu, An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparti-cles for the simultaneous determination of paraceta-mol and dopamine, Anal. Chim. Acta, 839, 59–66 (2014).

DOI: https://doi.org/10.1016/j.aca.2014.05.018.

G. Hu, Y. Guo, S. Shaoa, Simultaneous determination of dopamine and ascorbic acid using the nano-gold self-assembled glassy carbon electrode, Electroanaly-sis, 21, 1200–1206 (2009).

DOI: https://doi.org/10.1002/elan.200804510.

Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Application of graphene-modified electrode for selective detection of dopamine, Electrochem. commun. 11, 889–892 (2009). DOI: https://doi.org/10.1016/j.elecom.2009.02.013.

S. Palanisamy, S. Ku, S. M. Chen, Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite, Microchim. Acta, 180, 1037–1042 (2013).

DOI: https://doi.org/10.1007/s00604-013-1028-1.

H. Ö. Doğan, D. Ekinci, Ü. Demir, Atomic scale imag-ing and spectroscopic characterization of electrochem-ically reduced graphene oxide, Surf. Sci. 611, 54–59 (2013). DOI: https://doi.org/10.1016/j.susc.2013.01.014.

V. Kathiresan, D. Thirumalai, T. Rajarathinam, M. Yeom, J. Lee, S. Kim, J. H. Yoon, S. C. Chang, A simple one-step electrochemical deposition of bioin-spired nanocomposite for the non-enzymatic detection of dopamine, J. Anal. Sci. Technol. 12, 5 (2021).

DOI: https://doi.org/10.1186/s40543-021-00260-y.

B. K. Urhan, T. Öznülüer, Ü. Demir, H. Ö. Doğan, One-pot electrochemical synthesis of lead oxideelec-tro¬chemically reduced graphene oxide nanostructures and their electrocatalytic applications, IEEE Sens. J. 19, 4781–4788 (2019).

DOI: https://doi.org/10.1109/JSEN.2019.2904738.

B. K. Urhan, H. Ö. Doğan, T. Ö. Özer, Ü. Demir, One-pot electrochemical synthesis of Ni nanoparticles-decorated electroreduced graphene oxide for im-proved NADH sensing, Electroanalysis, 32, 2323–2329 (2020). DOI: https://doi.org/10.1002/elan.202060117.

H. Ö. Doğan, E. Çepni, B. K. Urhan, M. Eryiğit, Non-enzymatic amperometric detection of H2O2 on one-step electrochemical fabricated Cu2O/electrochemically reduced graphene oxide nanocomposite, Chemistry Select., 4, 8317–8321 (2019).

DOI: https://doi.org/10.1002/slct.201901588.

M. Eryiğit, E. Çepni, B. K. Urhan, H. Ö. Doğan, T. Ö. Özer, Nonenzymatic glucose sensor based on poly(3,4-ethylene dioxythiophene)/electroreduced graphene oxide modified gold electrode, Synth. Met. 268, 116488 (2020).

DOI: https://doi.org/10.1016/j.synthmet.2020.116488.

B. K. Urhan, Ü. Demir, T. Ö. Özer, H. Ö. Doğan, Elec-trochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection, Thin Solid Films. 693, 137695 (2020).

DOI: https://doi.org/10.1016/j.tsf.2019.137695.

M. Eryiğit, E. Temur, T.Ö. Özer, H.Ö. Doğan, Electro-chemical fabrication of Prussian blue nanocube-decorated electroreduced graphene oxide for am-perometric sensing of NADH, Electroanalysis, 31, 905–912 (2019).

DOI: https://doi.org/10.1002/elan.201800830.

T. Öznülüer, Ü. Demir, H. Ö. Doğan, Fabrication of underpotentially deposited Cu monolayer/electro-chemically reduced graphene oxide layered nanocom-posites for enhanced ethanol electro-oxidation, Appl. Catal. B Environ. 235, 56–65 (2018).

DOI: https://doi.org/10.1016/j.apcatb.2018.04.065.

H. Ö. Doğan, Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode, Solid State Sci. 98, 106029 (2019).

DOI: https://doi.org/10.1016/j.solidstatesciences.2019.106029.

S. Pei, H. M. Cheng, The reduction of graphene oxide, Carbon., 50, 3210–3228 (2012).

DOI: https://doi.org/10.1016/j.carbon.2011.11.010.

S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: A review, Carbon, 94, 224–242 (2015).

DOI: https://doi.org/10.1016/j.carbon.2015.06.030.

V. V. Sharma, I. Gualandi, Y. Vlamidis, D. Tonelli, Electrochemical behavior of reduced graphene oxide and multi-walled carbon nanotubes composites for catechol and dopamine oxidation, Electrochim. Acta. 246, 415–423 (2017).

DOI: https://doi.org/10.1016/j.electacta.2017.06.071.

G. J. Rani, K. J. Babu, G. G. kumar, M. A. J. Rajan, Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and se-lective electrochemical sensing of dopamine, J. Alloys Compd. 688, 500–512 (2016).

DOI: https://doi.org/10.1016/j.jallcom.2016.07.101.

R. Sivasubramanian, P. Biji, Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 210, 10–18 (2016).

DOI: https://doi.org/10.1016/j.mseb.2016.04.018.

H. Bagheri, N. Pajooheshpour, B. Jamali, S. Amidi, A. Hajian, H. Khoshsafar, A novel electrochemical plat-form for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2-Gr ternary nanocomposite, Microchem. J. 131, 120–129 (2017).

DOI: https://doi.org/10.1016/j.microc.2016.12.006.

A. Numan, M. M. Shahid, F. S. Omar, K. Ramesh, S. Ramesh, Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultra-sensitive platform for dopamine detection, Sensors and Actuators B: Chem. 238, 1043–1051 (2017).

DOI: https://doi.org/10.1016/j.snb.2016.07.111.

X. W. Liu, J. J. Mao, P. De Liu, X. W. Wei, Fabrica-tion of metal-graphene hybrid materials by electroless deposition, Carbon, 49, 477–483 (2011).

DOI: https://doi.org/10.1016/j.carbon.2010.09.044.

J. Tian, W. Wu, A novel preparation of water-dispersed graphene and their application to electro-chemical detection of dopamine, Adv. Powder Tech-nol. 32, 619–629 (2021). DOI: https://doi.org/10.1016/j.apt.2021.01.011.

M. Eryiğit, E. P. Gür, M. Hosseinpour, T. Ö. Özer, H. Ö. Doğan, Amperometric detection of dopamine on Prussian blue nanocube-decorated electrochemically reduced graphene oxide hybrid electrode, Mater. To-day Proc. 46, 6991–6995 (2021).

DOI: https://doi.org/10.1016/j.matpr.2021.03.277.

X. Zhang, Y. C. Zhang, L. X. Ma, One-pot facile fab-rication of graphene-zinc oxide composite and its en-hanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid, Sensors and Actuators B: Chem. 227, 488–496 (2016).

DOI: https://doi.org/10.1016/j.snb.2015.12.073.

S. T. Chang, I. C. Leu, M. H. Hon, Preparation and characterization of nanostructured tin oxide films by electrochemical deposition, Electrochem. Solid-State Lett. 5, C71 (2002).

DOI: https://doi.org/10.1149/1.1485808.

S. Kaizra, Y. Louafi, B. Bellal, M. Trari, G. Rekhila, Electrochemical growth of tin(II) oxide films: Applica-tion in photocatalytic degradation of methylene blue, Mater. Sci. Semicond. Process. 30, 554–560 (2015).

DOI: https://doi.org/10.1016/j.mssp.2014.10.045.

J. M. Themlin, M. Chtaïb, L. Henrard, P. Lambin, J. Darville, J.M. Gilles, Characterization of tin oxides by x-ray-photoemission spectroscopy, Phys. Rev. B. 46, 2460–2466 (1992).

DOI: https://doi.org/10.1103/PhysRevB.46.2460.

Y. L. Xie, J. Yuan, H. L. Ye, P. Song, S. Q. Hu, Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric ac-id, J. Electroanal. Chem. 749, 26–30 (2015).

DOI: https://doi.org/10.1016/j.jelechem.2015.04.035.

R. Nurzulaikha, H. N. Lim, I. Harrison, S. S. Lim, A. Pandikumar, N. M. Huang, S. P. Lim, G. S. H. Thien, N. Yusoff, I. Ibrahim, Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine, Sens. Bio-Sensing Res. 5, 42–49 (2015).

DOI: https://doi.org/10.1016/j.sbsr.2015.06.002.

B. J. Plowman, M. Mahajan, A. P. O’Mullane, S. K. Bhargava, Electrochemical detection of dopamine and cytochrome c at a nanostructured gold electrode, Elec-trochim. Acta, 55, 8953–8959 (2010).

DOI: https://doi.org/10.1016/j.electacta.2010.08.045.

J. Li, J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xu, X. Hu, Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine, Anal. Methods, 4, 1725–1728 (2012).

DOI: https://doi.org/10.1039/c2ay05926f.

Downloads

Published

2021-12-15

How to Cite

Öztürk Doğan, H., Kurt Urhan, B., Öznülüer Özer, T., & Demir, Ümit. (2021). One-pot electrochemical fabrication of SnO-reduced graphene oxide electrodes for amperometric sensing of dopamine. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 299–306. https://doi.org/10.20450/mjcce.2021.2427

Issue

Section

Electrochemistry