Conversion of coal fly ash glass into glass-ceramics by controlled thermal treatment

Authors

  • Biljana Angjusheva Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje
  • Vojo Jovanov Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje
  • Emilija Fidanchevski Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje

DOI:

https://doi.org/10.20450/mjcce.2021.2429

Keywords:

coal fly ash, vitrification, parent glass, consolidation, glass-ceramics

Abstract

Glass-ceramics were fabricated by controlled crystallization of glass vitrified without any additives from coal fly ash. The glass transition temperature (Tg) and peak temperature (Tp) of the parent glass were 580 ºC and 1020 ºC, respectively. The crystallization tendency of the parent glass was estimated by the Hruby-coefficient (K= 2.3). The ratio of the crystalline and amorphous phases in the glass-ceramics sintered at 1100 ºC/60 min was 68/32. The major crystalline phases were calcium aluminum silicate (anorthite) and hematite. The density, bending strength, and E-modulus of the glass-ceramics were 2.20 g/cm3, 78 MPa, and 32 GPa, respectively. The glass-ceramics can potentially be used as a construction material.

References

R. S. Blissett, N. A. Rowson, A review of the multi-component utilization of coal fly ash, Fuel 97, 1–23 (2012). DOI: https://doi.org/10.1016/j.fuel.2012.03.024

ECOBA, www.ecoba.com, accessed January 2021

S. Kramar, L. Žibret, E. Fidanchevska, V. Jovanov, B. Angjusheva, V. Ducman, Use of fly ash and phos-phogypsum for the synthesis for belite-sulfoaluminate clinker, Mater.de Const. 69, (333), e176, (2019).

DOI: https://doi.org/10.3989/mc.2019.11617

M. L. Zeggar, N. Azline, N. A.Safiee, Fly ash as supplementry material in concrete: A review, IOP Conf. Series: Earth and Environ. Sci. 357, 012025 (2019). DOI:10.1088/1755-1315/357/1/012025

https://www.esm.com.mk/?page_id=110, accessed Janu-ary 2021.

B. Angjusheva, Production and characterization of glass-ceramics from waste materials, Quality of life, 2, (1–2) 13–20 (2011). DOI: 10.7251/QOL1101013A

D. Bortoluzzi, L. Rodrigeues, A. M. Bernardin, Inertiza-tion of Coal Ashes by the Vitrification Technique: A Mixture design Approach, Miner. Process Extr. M. 34, 202–209 (2013). DOI: 10.1080/08827508.2012.656778

S. Boycheva, D. Zgureva, V. Vassilev, Kinetic and ther-modynamic studies on the thermal behaviour of fly ash from lignite coals, Fuel 108, 639–646 (2013).

DOI: https://doi.org/10.1016/j.fuel.2013.02.042

J. Dávalos et al., Preparation of glass-ceramics materials from coal fly ash and rise husk ash: Microstructural, physical and mechanical properties, Bol. Soc. Esp. Cerám. Vidr. (2020).

DOI: https//doi.org/10.1016/j.bsecv.2020.02.002

G. Yilmaz, Structural characterization of glass–ceramics made from fly ash containing SiO2–Al2O3–Fe2O3–CaO and analysis by FT-IR–XRD–SEM methods, J. Mol. Struct. 1019, 37–42 (2012).

DOI: https://doi.org/10.1016/j.molstruc.2012.03.028

S. Wang, C. Zhang, J. Chen, Utilization of coal fly ash for the production of glass-ceramics with unique perfor-mances: A Brief Review, J. Mater. Sci. Technol. 30, (12), 1208–1212 (2014). DOI:10.1016/j.jmst.2014.10.005

R. D. Rawlings, J. P. Wu, A. R. Boccaccini, Glass-ceramics: Their production from wastes – A review, J. Mater. Sci. 41, 733–761 (2006).

DOI: https://doi.org/10.1007/s10853-006-6554-3

L. Zeng, H. Sun, T. Peng, W. Zheng, The sintering kinet-ics and properties of sintered glass-ceramics from coal fly ash of different particle size, Res. Phys. 15, 102774 (2019).

DOI:https://doi.org/10.1016/j.rinp.2019.102774

L. Barbieri, A. M. Ferrari, I. Lancellotti, C. Leonelli, J. M. Rincón, M. Romero, Crystallization of (Na2O-MgO)-CaO-Al2O3-SiO2 glassy systems formulated from waste products, J. Am. Ceram. Soc. 83, 2515–20 (2000). DOI:10.1111/j.1151-1916.2000.tb01584.x

DIN EN 106:1992, Ceramic tiles. Determination of chemical resistance. Unglazed tiles.

G. Baldi, E. Cenerali, C. Leonelli, T. Manfredi, G. C. Pellacani, C. Sligardi, Effects of nucleating agents on di-opside crystallization in new glass-ceramics for tile-glaze application, J. Mater. Sci. 30, 3251–3255 (1995). DOI: https://doi.org/10.1007/BF01209246

I. Rozenstrauha, D. Bajare, R. Cimdins, L. Berzina, J. Bossert, A. R. Boccaccini, The influence of various addi-tions on a glass-ceramic matrix composition based on in-dustrial waste, Ceram. Int. 32, 115–119 (2006).

DOI: https://doi.org/10.1016/j.ceramint.2005.01.006

M. R. Little, V. Adell, A. R. Boccaccini, C. R. Cheeseman, Production of novel ceramic materials from coal fly ash and metal finishing wastes, Resour. Conserv. Recycl. 52, (11) 1329–1335 (2008).

DOI: https://doi.org/10.1016/j.resconrec.2008.07.017

S. Ghosal, J. L. Ebert, S.A. Self, Chemical composition and size distributions for fly ashes, Fuel Process. Tech-nol. 44, 81 1–3 (1995).

DOI: https://doi.org/10.1016/0378-3820(94)00115-A

L. Barbieri, A. Karamanov, A. Corradi, I. Lancellotti, M. Pelino, J. Ma. Rincon, Structure, chemical durability and crystallization behavior of incenerator-based glassy systems, J. Non-Cryst. Solids, 354, 521–528 (2008).

DOI: https://doi.org/10.1016/j.jnoncrysol.2007.07.080

L. Barbieri, F. Bondiooli, I. Lancellotti, C. Leonelli, M. Montorsi, A. M. Ferrari, P. Miselli, The anothite-diopside system: structural and devitrification study. Part II: Crystalinity analysis by the Rietveld – RIR method, J. Am. Ceram. Soc. 88, 11 3131–3136 (2005). DOI: https://doi.org/10.1111/j.1551-2916.2005.00578.x

A. A. Francis, R. D. Rawlings, R. Sweeney, A. R. Boccaccini, Crystalization kinetic of glass particles prepared from a mixture of coal ash and soda lime cullet glass, J. Non-Cryst. Solids, 333, 187–193 (2004).

DOI: https://doi.org/10.1016/j.jnoncrysol.2003.09.048

M. Erol, S. Kűçűkbayrak, A. Ersoy-Meriçboyu, Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash. J. Hazard. Mater. 153, 418–425 (2008).

DOI: https://doi.org/10.1016/j.jhazmat.2007.08.071

A. Karamanov, M. Pelino. Induced crystallization porosity and properties of sintered diopslide and wollastonite glass-ceramics, J. Eur. Ceram. Soc. 28, 555–562 (2008).

DOI: 10.1016/j.jeurceramsoc.2007.08.001

K. Ikeda, Y. Nakayama, K. Kaizu, H. Kinoshita, A. Yo-shikawa, S. Ogawa, H. S. Kim, Development of high-strength fly ash glass ceramics: Influence of Additive on Material Properties, J. Solid. Mech. Mater. Eng. 1, 8 1017–1025 (2007).

DOI: https://doi.org/10.1299/jmmp.1.1017

F. Peng, K. Liang, A. Hu, H. Shao, Nano-crystal glass-ceramics obtained by crystalization of vitrified coal fly ash, Fuel 83, 1973–1977 (2004).

DOI: https://doi.org/10.1016/j.fuel.2004.04.008

M. A. Binhussain, M. Marangoni, E. Bernardo, P. Co-lombo, Sintered and glazed glass-ceramics from natural and waste raw material, Ceram. Int. 40, 3543–3551 (2014).

DOI: https://doi.org/10.1016/j.ceramint.2013.09.074

A. Karamanov, M. Pelino, M. Salvo, I. Metekovits, Sin-tered glass-ceramics from incinerator fly ashes. Part II. The influence of the particle size and heat-treatment on the properties, J. Eur. Ceram. Soc. 23, 1609–1615 (2003).

DOI: https://doi.org/10.1016/S0955-2219(02)00371-0

P. Pisciella, S. Crisucci, A. Karamanov, M. Pelino, Chemical durability of glasses obtained by vitrification of industrial wastes, Waste Manag. 21, 1–9 (2001).

DOI: 10.1016/S0956-053X(00)00077-5

D. H. Vu, K. S. Wang, J. H. Chen, B. X. Nam, B. H. Bac, Glass-ceramic from mixture of bottom ash and fly ash, Waste Manag. 32, 2306–2314 (2012).

DOI: https://doi.org/10.1016/j.wasman.2012.05.040

Downloads

Published

2021-12-15

How to Cite

Angjusheva, B., Jovanov, V., & Fidanchevski, E. (2021). Conversion of coal fly ash glass into glass-ceramics by controlled thermal treatment. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 307–319. https://doi.org/10.20450/mjcce.2021.2429

Issue

Section

Materials Chemistry