This is an outdated version published on 2022-12-19. Read the most recent version.

Effects of Flavobacterium psychrophilum extracellular products and lipopolysaccharide antigens on the antioxidant enzyme system activity of rainbow trout (Oncorhynchus mykiss) fry

Authors

  • Muammer Kirici Department of Veterinary Health, Food Agriculture and Livestock Vocational School, Bingöl University, 12000, Bingöl, Turkey https://orcid.org/0000-0003-1888-4388
  • Mahinur Kirici Bingöl University, Faculty of Arts and Science, Department of Chemistry, Bingöl
  • Mehmet Resit Taysi Department of Fisheries, Faculty of Agriculture, Bingöl University, Bingöl
  • Unal Ispir Malatya Turgut Özal University, Doğanşehir Vahap Küçük Vocational School, Department of Aqua-culture, Malatya

DOI:

https://doi.org/10.20450/mjcce.2022.2482

Keywords:

Flavobacterium psychrophilum, fish, antioxidant enzymes, lipopolysaccharide, extracellular products

Abstract

The aim of this study was to investigate the response of different doses of lipopolysaccharide (LPS) and extracellular product (ECP) antigens (25, 50, 100, 250, and 500 µg) obtained from Flavobacterium psychrophilum to changes in oxidative stress parameters (catalase [CAT], superoxide dismutase [SOD], glutathione peroxidase [GPx], glucose 6-phosphate dehydrogenase [G6PD], glutathione reductase [GR], and malondialdehyde [MDA]) in juvenile rainbow trout. For this purpose, 6 different doses of F. psychrophilum (102–106) were applied to the fish, and the lethal dose 50 % (LD50) value was determined as 1.33·104. Changes in MDA levels and antioxidant enzymes were determined by applying 25 % of the LD50 value to fish for 14 days. Accordingly, while F. psychrophilum increased GR, G6PD, GPx, and SOD activity, it decreased MDA levels and CAT activity. Initially, 25, 50, 100, 250, and 500 µg doses of ECP and LPS were applied to the fish; after 21 days, a 25 % dose of LD50 was applied to these fish. Fourteen days later, the fish were taken, and the changes in MDA levels and antioxidant enzymes were examined. As a result, it was determined that while ECP and LPS application decreased GR, G6PD, GPx, and SOD activity, there was an increase in MDA levels and CAT activity.

References

(1) Ozdemir, N. S.; Ispir, U.; Kirici, M.; Ozcan, M., Changes of Fatty Acids Content in Rainbow Trout Infected with Flavobacterium psychrophilum. Appl. Sci. Rep. 2015, 11, 11–15.

http://dx.doi.org/10.15192/PSCP.ASR.2015.11.1.1115

(2) Starliper, C. E., Bacterial Coldwater Disease of Fishes Caused by Flavobacterium psychrophilum. J. Adv. Res. 2011, 2, 97–108.

https://doi.org/10.1016/j.jare.2010.04.001

(3) Schubiger, C. B.; Orfe, L. H.; Sudheesh, P. S.; Cain, K. D.; Shah, D. H.; Call, D. R., Entericidin is Required for a Probiotic Treatment (Enterobacter sp. strain C6-6) to Pro-tect Trout from Cold-Water Disease Challenge. Appl. En-viron. Microbiol. 2015, 81, 658–665.

https://doi.org/10.1128/AEM.02965-14

(4) Sommerset, I.; Krossøy, B.; Biering, E.; Frost, P., Vac-cines for Fish in Aquaculture. Expert Rev. Vaccines 2005, 4, 89–101.

https://doi.org/10.1586/14760584.4.1.89

(5) Högfors, E.; Pullinen, K. R.; Madetoja, J.; Wiklund, T., Immunization of Rainbow Trout, Oncorhynchus mykiss (Walbaum), with a Low Molecular Mass Fraction Isolat-ed from Flavobacterium psychrophilum. J. Fish Dis. 2008, 31, 899–911.

https://doi.org/10.1111/j.1365-2761.2008.00956.x

(6) Plant, K. P.; Lapatra, S. E.; Cain, K. D., Vaccination of Rainbow Trout, Oncorhynchus mykiss (Walbaum), with Recombinant and DNA Vaccines Produced to Flavobac-terium psychrophilum Heat Shock Proteins 60 and 70. J. Fish Dis. 2009, 32, 521–534.

https://doi.org/10.1111/j.1365-2761.2009.01008.x

(7) Gliniewicz, K.; Plant, K. P.; Lapatra, S. E.; Lafrentz, B. R.; Cain, K.; Snekvik, K. R.; Call, D. R., Comparative Proteomic Analysis of Virulent and Rifampicin-Attenuated Flavobacterium psychrophilum. J. Fish Dis. 2012, 35, 529–539.

https://doi.org/10.1111/j.1365-2761.2012.01378.x

(8) Bos, M. P.; Tomassen, J., Biogenesis of the Gram-Negative Bacterial Outer Membrane. Curr. Opin. Micro-biol. 2004, 7, 610–616.

https://doi.org/10.1016/j.mib.2004.10.011

(9) Anwar, M. A.; Choi, S., Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Rel-evance for Economically Important Diseases. Mar. Drugs. 2014, 12, 2485–2514.

https://doi.org/10.3390/md12052485

(10) Raetz, C. R. H.; Whitfield, C., Lipopolysaccharide Endo-toxins. Annu. Rev. Biochem. 2002, 71, 635–700.

https://doi.org/10.1146/annurev.biochem.71.110601.135414

(11) Sakai, M., Current Research Status of Fish Immunostim-ulants. Aquaculture 1999, 172, 63–92.

https://doi.org/10.1016/s0044-8486(98)00436-0

(12) Zhang, D.; Pridgeon, J. W.; Klesius, P. H., Vaccination of Channel Catfish with Extracellular Products of Aer-omonas hydrophila Provides Protection against Infection by the Pathogen. Fish Shellfish Immunol. 2014, 36, 270–275. https://doi.org/10.1016/j.fsi.2013.11.015

(13) Ispir, U.; Dorucu, M. Effect of Immersion Booster Vac-cination with Yersinia ruckeri Extracellular Products (ECP) on Rainbow Trout Oncorhynchus mykiss. Int. Aquat. Res. 2010, 2, 127–130.

(14) İspir, Ü.; Şeker, E.; Sağlam, N.; Dörücü, M., A Study of Flavobacterium psychrophilum Infection in Some Cul-tured Rainbow Trout (Oncorhynchus mykiss) in Eastern Anatolia. Science and Engineering Journal of Fırat Uni-versity 2004, 16, 718–724. (in Turkish with English ab-stract)

(15) Holt, R. A.; Rohovec, J. S.; Fryer, J. L., Bacterial Coldwater Disease. In: Bacterial diseases of Fish, Blackwell Scientific Publications, 1993; pp 3–23.

(16) Holt, R. A., Cytophaga psychrophila, the Causative Agent of Bacterial Cold-Water Disease in Salmonid Fish. PhD thesis, Oregon State University, Department of Mi-crobiology, Corvallis, USA, 1987.

(17) Reed, L. J.; Muench, H., A Simple Methods of Estimat-ing Fifty Percent Endpoints. Am. J. Epidemiol. 1983, 27, 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

(18) Liu, P.V., Survey of Hemolysin Production among Spe-cies of Pseudomonads. J. Bacteriol. 1957, 74, 718–727. https://doi.org/10.1128/JB.74.6.718-727.1957

(19) Swain, P.; Nayak, S. K.; Sahu, A.; Meher, P. K.; Mishra, B. K., High Antigenic Cross-Reaction among the Bacteri-al Species Responsible for Diseases of Cultured Fresh-water Fishes and Strategies to Overcome It for Specific Serodiagnosis. Comp. Immunol. Microbiol. Infect. Dis. 2003, 26, 199–211.

https://doi.org/10.1016/S0147-9571(02)00059-0

(20) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J., Protein Measurement with Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.

https://doi.org/10.1016/S0021-9258(19)52451-6

(21) Red Cell Metabolism Manual of Biochemical Methods, Beutler, E., Eds., Academic Press: London, 1971.

(22) Placer, Z. A.; Cushman, L.; Johnson, B. C., Estimation of Products of Lipid Peroxidation (Malonyldialdehyde) in Biological Fluids. Anal. Biochem. 1966, 16, 359–364. https://doi.org/10.1016/0003-2697(66)90167-9

(23) Carlberg, I.; Mannervik, B., Purification and Characteri-zation of the Flavoenzyme Glutathione Reductase from Rat Liver. J. Biol. Chem. 1975, 250, 5475–5480.

https://doi.org/10.1016/S0021-9258(19)41206-4

(24) Sun, Y.; Oberley, L. W.; Li, Y., A Simple Method for Clinical Assay of Superoxide Dismutase. Clin. Chem. 1988, 34, 497–500.

https://doi.org/10.1093/clinchem/34.3.497

(25) Aebi, H., Catalase. In: Methods in Enzymatic Analysis. Academic Press, 1983; pp. 673–680.

https://doi.org/10.1016/B978-0-12-091302-2.50032-3

(26) Beutler, E., Red Cell Metabolism. In: A Manual of Bio-chemical Methods. Grune Strottan, 1975; pp 112–114.

(27) Yonar, S. M.; Sakin, F.; Yonar, M. E.; Ispir, U.; Kirici, M., Oxidative Stress Biomarkers of Exposure of Del-tamethrin in Rainbow Trout Fry (Oncorhynchus mykiss). Fresenius Environ. Bull. 2011, 20, 1931–1935.

(28) Yonar, M. E.; Ispir, U.; Yonar, S. M.; Kirici, M., Effect of Copper Sulphate on the Antioxidant Parameters in the Rainbow Trout Fry, Oncorhynchus mykiss. Cell. Mol. Biol. 2016, 4, 55–58.

https://doi.org/10.14715/cmb/2016.62.6.10

(29) Ispir, U.; Kirici, M.; Yonar, M. E.; Yonar, S. M., Re-sponse of Antioxidant System to Formalin in the Whole Body of Rainbow Trout, Oncorhynchus mykiss. Cell. Mol. Biol. 2017, 63, 13–16.

https://doi.org/10.14715/cmb/2017.63.1.3

(30) Kirici, M.; Turk, C.; Çağlayan, C.; Kirici, M., Toxic Ef-fects of Copper Sulphate Pentahydrate on Antioxidant Enzyme Activities and Lipid Peroxidation of Freshwater Fish Capoeta umbla Tissue. Appl. Ecol. Environ. Res. 2017, 5, 1685–1696.

http://dx.doi.org/10.15666/aeer/1503_16851696

(31) Taysi, M. R.; Kirici, M.; Kirici, M.; Sögüt, B.; Bozdayi, M. A.; Taysi, S., Cadmium Toxicity in Rainbow Trout (Oncorhynchus mykiss): A Study on Heart and Muscle Tissue. Turkish Journal of Agricultural and Natural Sci-ences, 2020, 7, 983–987.

https://doi.org/10.30910/turkjans.802746

(32) Tkachenko, H.; Kurhaluk, N.; Grudniewska, J.; An-driichuk, A., Tissue-Specific Responses of Oxidative Stress Biomarkers and Antioxidant Defenses in Rainbow Trout Oncorhynchus mykiss during a Vaccination against Furunculosis. Fish Physiol. Biochem. 2014, 40, 1289–1300. https://doi.org/10.1007/s10695-014-9924-9

(33) Tkachenko, H.; Grudniewska, J.; Pękala, A.; Terech-Majewska, E., Oxidative Stress and Antioxidant Defence Markers in Muscle Tissue of Rainbow Trout (Oncorhyn-chus mykiss) after Vaccination Against Yersinia ruckeri. J. Vet. Res. 2016, 60, 25–33.

https://doi.org/10.1515/jvetres-2016-0005

(34) Tkachenko, H.; Grudniewska, J.; Pękala, A., Effects of Oral Vaccinaton against Yersinia ruckeri on Oxidative Stress Biomarkers in Gills, Liver and Heart of Rainbow Trout (Oncorhynchus mykiss Walbaum). Balt. Coast. Zone 2017, 21, 109–128.

Downloads

Published

2022-12-19

Versions

How to Cite

Kirici, M., Kirici, M., Taysi, M. R., & Ispir, U. (2022). Effects of Flavobacterium psychrophilum extracellular products and lipopolysaccharide antigens on the antioxidant enzyme system activity of rainbow trout (Oncorhynchus mykiss) fry. Macedonian Journal of Chemistry and Chemical Engineering, 41(2). https://doi.org/10.20450/mjcce.2022.2482

Issue

Section

Biochemistry