This is an outdated version published on 2022-06-21. Read the most recent version.

Optimization of microwave-assisted extraction of phenolic compounds from Inula britannica L. using the Box-Behnken design

Authors

  • Viktoria Ivanova
  • Antoaneta Trendafilova Laboratory "Chemistry of Natural Products", Institute of Organic Chemistry with Centre of Phytochemistry, Sofia

DOI:

https://doi.org/10.20450/mjcce.2022.2483

Keywords:

Inula britannica L., phenolic compounds, microwave-assisted extraction, Box- Behnken design

Abstract

A closed-vessel microwave-assisted extraction (MAE) of phenolic compounds from the aerial parts of Inula britannica L. using single-factor experiments and the Box-Behnken design with four independent variables (liquid-to-solid ratio, ethanol concentration, extraction time, and temperature) was investigated. The ANOVA results showed that the obtained model was significant at a 95 % confidence level. The extraction parameters for the maximal total phenolic content (46.19 mg GAE/g DM) were determined to be 15.13 ml/g liquid-to-solid ratio, 55.95 % EtOH, 73.74 ºC, and 5.73 min. Compared with classical maceration, the proposed MAE of phenolic compounds from I. britannica saves a lot of time and gives a high extraction yield.

References

(1) Cheynier, V., Phenolic compounds: from plants to foods. Phytochem. Rev. 2012, 11 (2), 153–177.

https://doi.org/10.1007/S11101-012-9242-8.

(2) Tsao, R., Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2 (12), 1231–1246.

https://doi.org/10.3390/NU2121231.

(3) Dai, J.; Mumper, R. J., Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15 (10), 7313–7352.

https://doi.org/10.3390/MOLECULES15107313.

(4) Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J., The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. https://doi.org/10.3389/fnut.2018.00087.

(5) Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I.; Azhari, N. H., Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind. Crops Prod. 2018, 122, 533–544.

https://doi.org/10.1016/J.INDCROP.2018.06.034.

(6) Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E., Extraction techniques for the determination of phenolic compounds in food. Compr. Sampl. Sample Prep. 2012, 4, 159–180.

https://doi.org/10.1016/B978-0-12-381373-2.00132-0.

(7) Chan, C. H.; Yusoff, R.; Ngoh, G. C.; Kung, F. W. L., Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218 (37), 6213–6225. https://doi.org/10.1016/J.CHROMA.2011.07.040.

(8) Lopez-Avila, V.; Luque de Castro, M. D., Microwave-assisted extraction. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2014, 1–17.

https://doi.org/10.1016/B978-0-12-409547-2.11172-2.

(9) Mandal, V.; Mohan, Y.; Hemalatha, S., Microwave assisted extraction–an innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 2007, 1 (1), 7–18.

(10) Das, A. K.; Mandal, V.; Mandal, S. C., A brief understanding of process optimisation in microwave-assisted extraction of botanical materials: options and opportunities with chemometric tools. Phytochem. Anal. 2014, 25 (1), 1–12. https://doi.org/10.1002/PCA.2465.

(11) Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; Da Silva, E. G. P.; Portugal, L. A.; Dos Reis, P. S.; Souza, A. S.; Dos Santos, W. N. L., Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597 (2), 179–186.

https://doi.org/10.1016/J.ACA.2007.07.011.

(12) Khan, A. L.; Hussain, J.; Hamayun, M.; Gilani, S. A.; Ahmad, S.; Rehman, G.; Kim, Y. H.; Kang, S. M.; Lee, I. J., Secondary metabolites from Inula britannica L. and their biological activities. Molecules 2010, 15 (3), 1562–1577. https://doi.org/10.3390/MOLECULES15031562.

(13) Seca, A. M. L.; Grigore, A.; Pinto, D. C. G. A.; Silva, A. M. S., The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014, 154 (2), 286–310.

https://doi.org/10.1016/J.JEP.2014.04.010.

(14) Seca, A. M. L.; Pinto, D. C. G. A.; Silva, A. M. S., Metabolomic profile of the genus Inula. Chem. Biodivers. 2015, 12 (6), 859–906.

https://doi.org/10.1002/CBDV.201400080.

(15) Sun, C. P.; Jia, Z. L.; Huo, X. K.; Tian, X. G.; Feng, L.; Wang, C.; Zhang, B. J.; Zhao, W. Y.; Ma, X. C., Medicinal Inula species: phytochemistry, biosynthesis, and bioactivities. Am. J. Chin. Med. 2021, 49 (2), 315–358. https://doi.org/10.1142/S0192415X21500166.

(16) Ivanova, V.; Trendafilova, A.; Todorova, M.; Danova, K.; Dimitrov, D., Phytochemical profile of Inula britannica from Bulgaria: Nat. Prod. Commun. 2017, 12 (2), 153–154.

https://doi.org/10.1177/1934578X1701200201.

(17) Ivanova, V.; Todorova, M.; Rangelov, M.; Aneva, I.; Trendafilova, A., Phenolic content and antioxidant capacity of Inula britannica from different habitats in Bulgaria. Bulg. Chem. Commun. 2020, 52, 168–173.

(18) Yoo, K. M.; Lee, C. H.; Lee, H.; Moon, B. K.; Lee, C. Y., Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106 (3), 929–936. https://doi.org/10.1016/J.FOODCHEM.2007.07.006.

(19) Routray, W.; Orsat, V., Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2011 52 2011, 5 (2), 409–424.

https://doi.org/10.1007/S11947-011-0573-Z.

(20) Proestos, C.; Komaitis, M., Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT - Food Sci. Technol. 2008, 41 (4), 652–659. https://doi.org/10.1016/J.LWT.2007.04.013.

(21) Spigno, G.; De Faveri, D. M., Microwave-assisted extraction of tea phenols: a phenomenological study. J. Food Eng. 2009, 93 (2), 210–217.

https://doi.org/10.1016/J.JFOODENG.2009.01.006.

(22) Alara, O. R.; Abdurahman, N. H.; Abdul Mudalip, S. K., Optimizing microwave-assisted extraction conditions to obtain phenolic-rich extract from Chromolaena odorata leaves. Chem. Eng. Technol. 2019, 42 (9), 1733–1740. https://doi.org/10.1002/CEAT.201800462.

(23) Peng, F.; Cheng, C.; Xie, Y.; Yang, Y. Optimization of microwave-assisted extraction of phenolic compounds from Anli pear (Pyrus ussuriensis Maxim). Food Sci. Technol. Res. 2015, 21 (3), 463–471.

https://doi.org/10.3136/fstr.21.463.

(24) Xiao, W.; Han, L.; Shi, B., Microwave-assisted extraction of flavonoids from Radix astragali. Sep. Purif. Technol. 2008, 62 (3), 614–618.

https://doi.org/10.1016/J.SEPPUR.2008.03.025.

(25) Alara, O. R.; Abdurahman, N. H.; Ali, H. A.; Zain, N. M., Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: an optimization study and LC-QTOF-MS analysis. Futur. Foods 2021, 3, 100035. https://doi.org/10.1016/J.FUFO.2021.100035.

Downloads

Additional Files

Published

2022-06-21

Versions

How to Cite

Ivanova, V., & Trendafilova, A. (2022). Optimization of microwave-assisted extraction of phenolic compounds from Inula britannica L. using the Box-Behnken design. Macedonian Journal of Chemistry and Chemical Engineering, 41(1). https://doi.org/10.20450/mjcce.2022.2483

Issue

Section

Natural Products