Optimization of microwave-assisted extraction of phenolic compounds from Inula britannica L. using the Box-Behnken design
DOI:
https://doi.org/10.20450/mjcce.2022.2483Keywords:
Inula britannica L., phenolic compounds, microwave-assisted extraction, Box- Behnken designAbstract
A closed-vessel microwave-assisted extraction (MAE) of phenolic compounds from the aerial parts of Inula britannica L. using single-factor experiments and the Box-Behnken design with four independent variables (liquid-to-solid ratio, ethanol concentration, extraction time, and temperature) was investigated. The ANOVA results showed that the obtained model was significant at a 95 % confidence level. The extraction parameters for the maximal total phenolic content (46.19 mg GAE/g DM) were determined to be 15.13 ml/g liquid-to-solid ratio, 55.95 % EtOH, 73.74 ºC, and 5.73 min. Compared with classical maceration, the proposed MAE of phenolic compounds from I. britannica saves a lot of time and gives a high extraction yield.
References
(1) Cheynier, V., Phenolic compounds: from plants to foods. Phytochem. Rev. 2012, 11 (2), 153–177.
https://doi.org/10.1007/S11101-012-9242-8.
(2) Tsao, R., Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2 (12), 1231–1246.
https://doi.org/10.3390/NU2121231.
(3) Dai, J.; Mumper, R. J., Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15 (10), 7313–7352.
https://doi.org/10.3390/MOLECULES15107313.
(4) Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J., The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. https://doi.org/10.3389/fnut.2018.00087.
(5) Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I.; Azhari, N. H., Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind. Crops Prod. 2018, 122, 533–544.
https://doi.org/10.1016/J.INDCROP.2018.06.034.
(6) Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E., Extraction techniques for the determination of phenolic compounds in food. Compr. Sampl. Sample Prep. 2012, 4, 159–180.
https://doi.org/10.1016/B978-0-12-381373-2.00132-0.
(7) Chan, C. H.; Yusoff, R.; Ngoh, G. C.; Kung, F. W. L., Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218 (37), 6213–6225. https://doi.org/10.1016/J.CHROMA.2011.07.040.
(8) Lopez-Avila, V.; Luque de Castro, M. D., Microwave-assisted extraction. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2014, 1–17.
https://doi.org/10.1016/B978-0-12-409547-2.11172-2.
(9) Mandal, V.; Mohan, Y.; Hemalatha, S., Microwave assisted extraction–an innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 2007, 1 (1), 7–18.
(10) Das, A. K.; Mandal, V.; Mandal, S. C., A brief understanding of process optimisation in microwave-assisted extraction of botanical materials: options and opportunities with chemometric tools. Phytochem. Anal. 2014, 25 (1), 1–12. https://doi.org/10.1002/PCA.2465.
(11) Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; Da Silva, E. G. P.; Portugal, L. A.; Dos Reis, P. S.; Souza, A. S.; Dos Santos, W. N. L., Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597 (2), 179–186.
https://doi.org/10.1016/J.ACA.2007.07.011.
(12) Khan, A. L.; Hussain, J.; Hamayun, M.; Gilani, S. A.; Ahmad, S.; Rehman, G.; Kim, Y. H.; Kang, S. M.; Lee, I. J., Secondary metabolites from Inula britannica L. and their biological activities. Molecules 2010, 15 (3), 1562–1577. https://doi.org/10.3390/MOLECULES15031562.
(13) Seca, A. M. L.; Grigore, A.; Pinto, D. C. G. A.; Silva, A. M. S., The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014, 154 (2), 286–310.
https://doi.org/10.1016/J.JEP.2014.04.010.
(14) Seca, A. M. L.; Pinto, D. C. G. A.; Silva, A. M. S., Metabolomic profile of the genus Inula. Chem. Biodivers. 2015, 12 (6), 859–906.
https://doi.org/10.1002/CBDV.201400080.
(15) Sun, C. P.; Jia, Z. L.; Huo, X. K.; Tian, X. G.; Feng, L.; Wang, C.; Zhang, B. J.; Zhao, W. Y.; Ma, X. C., Medicinal Inula species: phytochemistry, biosynthesis, and bioactivities. Am. J. Chin. Med. 2021, 49 (2), 315–358. https://doi.org/10.1142/S0192415X21500166.
(16) Ivanova, V.; Trendafilova, A.; Todorova, M.; Danova, K.; Dimitrov, D., Phytochemical profile of Inula britannica from Bulgaria: Nat. Prod. Commun. 2017, 12 (2), 153–154.
https://doi.org/10.1177/1934578X1701200201.
(17) Ivanova, V.; Todorova, M.; Rangelov, M.; Aneva, I.; Trendafilova, A., Phenolic content and antioxidant capacity of Inula britannica from different habitats in Bulgaria. Bulg. Chem. Commun. 2020, 52, 168–173.
(18) Yoo, K. M.; Lee, C. H.; Lee, H.; Moon, B. K.; Lee, C. Y., Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106 (3), 929–936. https://doi.org/10.1016/J.FOODCHEM.2007.07.006.
(19) Routray, W.; Orsat, V., Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2011 52 2011, 5 (2), 409–424.
https://doi.org/10.1007/S11947-011-0573-Z.
(20) Proestos, C.; Komaitis, M., Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT - Food Sci. Technol. 2008, 41 (4), 652–659. https://doi.org/10.1016/J.LWT.2007.04.013.
(21) Spigno, G.; De Faveri, D. M., Microwave-assisted extraction of tea phenols: a phenomenological study. J. Food Eng. 2009, 93 (2), 210–217.
https://doi.org/10.1016/J.JFOODENG.2009.01.006.
(22) Alara, O. R.; Abdurahman, N. H.; Abdul Mudalip, S. K., Optimizing microwave-assisted extraction conditions to obtain phenolic-rich extract from Chromolaena odorata leaves. Chem. Eng. Technol. 2019, 42 (9), 1733–1740. https://doi.org/10.1002/CEAT.201800462.
(23) Peng, F.; Cheng, C.; Xie, Y.; Yang, Y. Optimization of microwave-assisted extraction of phenolic compounds from Anli pear (Pyrus ussuriensis Maxim). Food Sci. Technol. Res. 2015, 21 (3), 463–471.
https://doi.org/10.3136/fstr.21.463.
(24) Xiao, W.; Han, L.; Shi, B., Microwave-assisted extraction of flavonoids from Radix astragali. Sep. Purif. Technol. 2008, 62 (3), 614–618.
https://doi.org/10.1016/J.SEPPUR.2008.03.025.
(25) Alara, O. R.; Abdurahman, N. H.; Ali, H. A.; Zain, N. M., Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: an optimization study and LC-QTOF-MS analysis. Futur. Foods 2021, 3, 100035. https://doi.org/10.1016/J.FUFO.2021.100035.
Downloads
Additional Files
Published
Versions
- 2022-07-01 (2)
- 2022-06-21 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Viktoria Ivanova, Antoaneta Trendafilova
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.