The Pd(II) complex involving a new pyrole-based ligand: Synthesis, spectral analysis and antimicrobial activity
DOI:
https://doi.org/10.20450/mjcce.2022.2526Keywords:
heterocyclic compounds, Palladium(II), Spectral characterization, Biological activity.Abstract
In the current study, firstly, a new pyrrole-based ligand (3,4-(ethylenedimercaptodiacetoxy)-N-(benzyl)-diethyl-2,5-pyrroledicarboxylate (L) was synthesized in the presence of diethyl-N-benzyl-3,4-dihydroxy-1H-pyrrole-2,5-dicarboxylate and 2,2'-(ethane-1,2-diylbis(sulfanediyl))diacetylchloride. Then, the palladium(II) complex of the synthesized ligand was obtained, and its structural features were examined by spectral (HRMS, ESI-MS, UV-Visible, FTIR, 1H NMR, 13C NMR, XRD-POWDER, SEM, EDX) and thermogravimetric (TG-DTA) techniques. The spectral and thermal measurements of the ligand and its Pd(II) complex show that the ligand is coordinated to the Pd2+ ion. Antimicrobial activities of both the ligand and its palladium complex were examined. It was determined that whereas the ligand indicated modest antimicrobial activity against Staphylococcus aureus and Candida albicans at a concentration of 6.25 µg/ml, the palladium complex was significantly effective against C. albicans at a concentration of 6.25 µg/ml.
References
(1) Li, J. J., Heterocyclic Chemistry in Drug Discovery. Wiley : New York, 2013. ISBN 978-1-118-14890-7.
(2) De Leon, C. Y; Ganem, B., A new approach to porphobilinogen and its analogs. Tetrahedron 1997, 53 (23), 7731–7752.
https://doi.org/10.1016/S0040-4020(97)00469-9
(3) Banik, B. K.; Samajdar, S.; Banik, I., Simple synthesis of substituted pyrroles. J. Org. Chem. 2004, 69 (1), 213–216. https://doi.org/10.1021/jo035200i
(4) Clauson-Kaas, C.; Tyle, Z., Preparation of cis- and trans 2,5-dimethoxy-2-(acetamidomethyl)-2,5-dihydrofuran, of cis- and trans 2,5-dimethoxy-2-(acetamidomethyl)-tetrahydrofuran and of 1-phenyl-2-(acetamidomethyl)-pyrrole. Acta Chem. Scand. 1952, 6, 667–670.
https://doi.org/10.3891/acta.chem.scand.06-0667
(5) Negishi, E.; Anastasia, L., Palladium-catalyzed alkynylation. Chem. Rev. 2003, 103, 1979–2017.
https://doi.org/10.1021/cr020377i
(6) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko M. F., Regioselective palladium-catalyzed arylation of 3-carboalkoxy furan and thiophene. Org. Lett. 2003, 5 (3), 301–304.
https://doi.org/10.1021/ol027266q
(7) Han, F. B.; Zhang, Y. L.; Sun, X. L.; Li, B. G.; Guo, Y. H.; Tang İ. Y., Synthesis and characterization of pyrrole-imine [N−NP] nickel(II) and palladium(II) complexes and their applications to norbornene polymerization. Organometallics 2008, 27, 1924–1928.
https://doi.org/10.1021/om701297k
(8) Paul, P.; Bhattacharya, S., Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone: Synthesis, structure and spectral properties. J. Chem. Sci. 2014, 126 (5), 1547–1555.
https://doi.org/10.1007/s12039-014-0699-4
(9) Mbugua, S. N.; Sibuyi, N. R. S.; Njenga, L. W.; Odhiambo, R. A.; Wandiga, S. O.; Meyer, M.; Lalancette, R. A.; Onani, M. O., New palladium(II) and platinum(II) complexes based on pyrrole Schiff bases: synthesis, characterization, X-ray structure, and anticancer activity. ACS OMEGA 2020, 5, 14942–14954. https://doi.org/10.1021/acsomega.0c00360
(10) Merz, A.; Schropp, R.; Dotterl, E., 3,4-dialkoxypyrroles and 2,3,7,8,12,13,17,18-octaalkoxyporphyrins. Synthesis 1995, 7, 795–800. https://doi.org/10.1055/s-1995-3993
(11) Rajakumara, P.; Abdul Rasheed, A. M., Synthesis, characterization and ion transportation studies of some novel cyclophane amides. Tetrahedron 2005, 61, 5351–5362. https://doi.org/10.1016/j.tet.2005.03.064
(12) Reference Method for Broth Dilution Antifungal Sus-ceptibility Testing of Yeasts; Approved Standard—Second Edition. NCCLS document M27-A2 (ISBN 1-56238-469-4). Clinical and Laboratory Standards In-stitute, Wayne : Pennsylvania, 2002.
(13) Performance Standards for Antimicrobial Susceptibil-ity Testing, Twenty-Second Informational Supplement. CLSI Document M100-S22, Clinical and Laboratory Standards Institute, Wayne: Pennsylvania, 2012.
(14) Kaya, E.; Ozbilge, H., Determination of the effect of fluconazole against Candida albicans and Candida glabrata by using microbroth kinetic assay. Turk. J. Med. Sci., 2012, 42 (2), 325–328.
https://doi.org/10.3906/sag-1010-1211
(15) Altun, Ö.; Koçer M. Ö., Spectral, kinetic and thermo-dynamic studies of Pd(II) with Schiff base derived from L-asparagine and furfuraldehyde in the presence of 8-hydroxyquinoline. J. Mol. Struc. 2021, 1224 (129242), 1–9.
https://doi.org/10.1016/j.molstruc.2020.129242
(16) Geary, W. J., The use of conductivity measurements in organic solvents for the characterisations of coordi-nation compounds. Coord. Chem. Rev. 1971, 7 (1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0
(17) Kettle, S. F. A., Coordination Compounds. Thomas Nelson and Sons : London,1975. ISBN: 10:0177710136 / ISBN 13: 9780177710131
(18) Dyer, J. R., Application of Absorption Spectroscopy of Organic Compounds; Prentice-Hall : New Jersey, 1965. ISBN-10: 0130388106; ISBN-13: 978-0130388100
(19) Lever, A. B. P., Inorganic Electronic Spectroscopy; Elsevier : New York, 1984.
ISBN: 0444423893 9780444423894
(20) Kang, J. G.; Cho, D. H.; Park, C.; Kang, S. K.; Kim, I. T.; Lee, S. W.; Lee, H. H.; Lee, Y. N.; Lim, D. W.; Lee, S. J.; Kim, S. H.; Bae, Y. J., X-ray crystal structure and luminescence properties of Pd(II) and Pt(II) complexes with dithiopyrrole. Bull. Korean Chem. Soc. 2008, 29 (3), 599–603. https://doi.org/10.5012/bkcs.2008.29.3.599
(21) Jambi, S. M. S.; Kandil, S. S., Synthesis and charact-erization of Ni(II), Pd(II), Pt(II) complexes of N-allyl-N'-(4-methylthiazol-2-yl)thiourea. J. Mater. Environ. Sci. 2012, 3 (3), 591–604.
ISSN: 2028–2508 CODEN: JMESCN
(22) Organic Structural Analysis. Lambert, J. B.; Shurwell, H. F.; Berbit, L.; Cooks, R. G.; Stout, G. H., Mac Millan : New York, 1976.
ISBN-13: 978-0023672903, ISBN-10: 0023672900
(23) Nakamato, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley and Sons : New York, 1997. ISBN: 978-0-471-74339-2
(24) Socrates, G., Infrared Characterization Group Fre-quencies: Tables and Charts, 3rd Edition; John Wiley and Sons : UK, 2004. ISBN: 978-0-470-09307-8
(25) Giovagnini, L.; Ronconi, L.; Aldinucci, D.; Lorenzon, D.; Sitran, S.; Fregona, D., Synthesis, characterization, and comparative in vitro cytotoxicity studies of platinum(II), palladium(II), and gold(III) methylsarco-sinedithiocarbamate complexes. J. Med. Chem. 2005, 48 (5), 1588–1595. https://doi.org/10.1021/jm049191x
(26) Jin, L.; Sakiyan, I.; Gonzales, N. S.; Lane, D.; Cherala, S., Synthesis, characterization and Cu2+ binding studies of l-histidine ester of 8-hydroxyquinoline. Inorg. Chim. Acta 2014, 423, 72–78.
https://doi.org/10.1016/j.ica.2014.07.042
(27) Salem, M. A.; Bakr, E. A.; El-Attar, H. G., Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Spectrochim. Acta, Part A 2018, 188, 155–163.
https://doi.org/10.1016/j.saa.2017.07.002
(28) Warren, B. E., X-ray Diffraction. Dover : New York, 1990. ISBN: 978-0-486-66317-3
(29) Velammal, S. P.; Devi, T. A.; Amaladhas, T. P., Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark, J. Nanostructure Chem. 2016, 6 (3), 247–260. https://doi.org/10.1007/s40097-016-0198-x
(30) Atta, A. H.; El-Shenawy, A. I.; Refat, M. S.; Elsabawy, K. M., Preparation and characterization of some gold nanometric compounds with simple organic materials as precursor: Spectroscopic, biological and anti-cancer assessments. J. Mol. Struct. 2013, 1039, 51–60.
https://doi.org/10.1016/j.molstruc.2013.01.029
(31) Barbosa, H. F. G. A.; Attjioui, M.; Ferreira, A. P. G.; Dockal, E. R.; Gueddari, N. E. E.; Moerschbacher, B. M.; Cavalheiro, E. T. G., Synthesis, characterization and biological activities of biopolymeric Schiff bases prepared with chitosan and salicylaldehydes and their Pd(II) and Pt(II) complexes. Molecules 2017, 22 (11), 1–19. http://dx.doi.org/10.3390/molecules22111987
(32) Yılmaz, V. T.; Ertem, A.; Guney, E.; Buyukgungor, O., Palladium(II) and platinum(II) saccharinate complexes with 2‐aminomethylpyridine and 2‐aminoethylpyridine: synthesis, characterization, crystal structures, and thermal properties. Z. Anorg. Allg. Chem. 2010, 636 (3–4), 610–615.
https://doi.org/10.1002/zaac.200900325
(33) Al-Hamdani, A. A. S.; Balkhı, A. M.; Falah, A.; Shaker, S. A., New azo-Schiff base derived with Ni(II), Co(II), Cu(II), Pd(II) and Pt(II) complexes: preparation, spectroscopic investigation, structural studies and biological activity. J. Chil. Chem. Soc. 2015, 60 (1), 2774–2785.
http://dx.doi.org/10.4067/S0717-97072015000100003
(34) Pahontu, E.; Paraschivescu, C.; Ilies, D. C.; Poirier, D.; Oprean, C.; Paunescu, V.; Gulea, A.; Rosu, T.; Bratu, O., Synthesis and characterization of novel Cu(II), Pd(II) and Pt(II) complexes with 8-ethyl-2-hydroxytricyclo (7.3.1. 02,7)tridecan-13-onethiosemicarbazone: Antimicrobial and in vitro antiproliferative activity. Molecules 2016, 21 (5), 1–18. https://doi.org/10.3390/molecules21050674
(35) Kavitha, K.; Reddy, L., Pd(II) complexes bearing chromone based Schiff bases: Synthesis, characterisation and biological activity studies. Arab. J. Chem. 2016, 9 (5), 640–648. https://doi.org/10.1016/j.arabjc.2013.06.018
(36) Kumar, V. A.; Sarala, Y.; Siddikha, A.; Vanitha, S.; Babu, S.; Reddy, A. V., Synthesis, characterization, antimicrobial and antioxidant activities of 2,4-dihydroxybenzaldehyde-4-phenyl-3-thiosemicarbazone (DHBPTSC) and its Pd(II), Ni(II)dppm mixed ligand and Cu(II) complex having heterocyclic bases. J. Appl. Pharm. Sci. 2018, 8 (04): 071–078. https://doi.org/10.7324/JAPS.2018.8410
(37) Mihalache, M.; Negreanu-Pirjol, T.; Dumitraşcu, F.; Draghici, C.; Calinescu, M., Synthesis, characterization and biological activity of new Ni(II), Pd(II) and Cr(III) complex compounds with chlorhexidine. J. Serb. Chem. Soc. 2018, 83 (3), 271–284.
Downloads
Additional Files
Published
Versions
- 2022-12-31 (2)
- 2022-11-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Özlen Altun, Mesut Boz, Övul Tetik
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.