This is an outdated version published on 2022-12-19. Read the most recent version.

Synthesis and characterization of silver nanoparticles using Sphaerophysa kotschyana fruit and the assessment of their antioxidant activity

Antioxidant effect of nanoparticles

Authors

  • Nusret Genc Department of Chemistry, Faculty of Arts and Science, Tokat Gaziosmanpasa University

DOI:

https://doi.org/10.20450/mjcce.2022.2579

Keywords:

Sphaerophysa kotschyana fruit, silver nanoparticles, spectroscopy, natural products, green synthesis, antioxidant activity

Abstract

Nanoparticles have attracted great interest recently due to their application in many fields. In this study, an eco-friendly, scalable, cost-effective method was used for the synthesis of silver nanoparticles (s-AgNPs) using the fruit extract of Sphaerophysa kotschyana as a reducing agent, and their structure was elucidated by extensive spectroscopic techniques. The color change from yellow to dark brown indicated the formation of s-AgNPs. In the UV-Vis spectrum, the maximum absorption was observed at 437 nm. Fourier transform infrared (FTIR) spectroscopy displayed the functional group of the natural compounds in the extract that capped and stabilized the s-AgNPs. The characteristic hydroxyl vibrational signal appeared at 3168 cm–1. The X-ray diffraction (XRD) pattern indicated that the s-AgNPs were face-centered cubic crystalline structures. Scanning electron microscopy (SEM) exhibited the spherical-shaped nanoparticles with an average size of 67.37 nm. The antioxidant activity of the extract and s-AgNPs was established using the DPPH, ABTS, and FRAP assays. In the DPPH test, the effect of s-AgNPs was observed to be significantly higher than that of the extract, and the activity of s-AgNPs in the FRAP test was also reported to be higher than the extract. In the ABTS assay, the s-AgNPs displayed outstanding activity, which was even better than the standards. Consequently, s-AgNPs synthesized from S. kotschyana are promising drug products for diseases caused by oxidative stress.

References

(1) Cragg, G. M.; Newman, D. J., Plants as a source of anti-cancer agents, J. Ethnopharmacol. 2005, 100 (1–2), 72–79. https://doi.org/10.1016/j.jep.2005.05.011

(2) Topçu, G.; Erenler, R.; Çakmak, O.; Johansson, C. B.; Çelik, C.; Chai, H.-B.; Pezzuto, J. M., Diterpenes from the berries of Juniperus excelsa. Phytochemistry 1999, 50 (7), 1195–1199.

https://doi.org/10.1016/S0031-9422(98)00675-X

(3) Elmastas, M.; Ozturk, L.; Gokce, I.; Erenler, R.; Aboul-Enein, H. Y., Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal. Lett. 2004, 37 (9), 1859–1869.

https://doi.org/10.1081/AL-120039431

(4) Aksit, H.; Çelik, S. M.; Sen, Ö.; Erenler, R.; Demirtas, I.; Telci, I.; Elmastas, M., Complete isolation and characterization of polar portion of Mentha dumetorum water extract. Rec. Nat. Prod. 2014, 8(3), 277–280.

(5) De Souza, T. A. J.; Souza, L. R. R.; Franchi, L. P., Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity, Ecotox. Environ. Safe. 2019, 171, 691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095

(6) El-Seedi, H. R.; El-Shabasy, R. M.; Khalifa, S. A.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F. J.; Abdel-Daim, M. M.; Omri, A.; Hajrahand, N. H., Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 2019, 9 (42), 24539–24559.

https://doi.org/10.1039/C9RA02225B

(7) Zafar, A.; Rizvi, R.; Mahmood, I., Biofabrication of silver nanoparticles from various plant extracts: blessing to nanotechnology. Intern. J. Environ. Anal. Chem. 2019, 99 (14), 1434–1445.

https://doi.org/10.1080/03067319.2019.1622698

(8) Erenler, R.; Dag, B., Biosynthesis of silver nanoparticles using Origanum majorana L. and evaluation of their antioxidant activity, Inorg. Nano-Met. Chem. 2022, 52 (4), 485–492.

https://doi.org/10.1080/24701556.2021.1952263

(9) Bachheti, R. K.; Fikadu, A.; Bachheti, A.; Husen, A., Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi. J. Biol. Sci. 2020, 27 (10), 2551. https://doi.org/10.1016/j.sjbs.2020.05.012

(10) Dag, B., Green synthesis, characterization, and antioxidant activity of silver nanoparticles using Stachys annua L. subsp. annua var. annua. Particul. Sci. Technol. 2022, 40 (4), 512–520.

https://doi.org/10.1080/02726351.2021.1966689

(11) Karan, T.; Erenler, R.; Bozer, B. M., Synthesis and characterization of silver nanoparticles using curcumin: cytotoxic, apoptotic, and necrotic effects on various cell lines. Z. Naturforsch. C 2022, 77 (7–8), 343–350. https://doi.org/10.1515/znc-2021-0298

(12) Yogeswari, R.; Sikha, B.; Akshya, K. O., Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimic. 2012, 4 (6), 103–109. https://doi.org/10.5897/JMA11.060

(13) Duran, A.; Martin, E.; Öztürk, M.; Çetin, Ö.; Dinç, M.; Özdemir, A., Morphological, karyological and eco¬logical features of halophytic endemic Sphaerophysa kotschyana Boiss. (Fabaceae) in Turkey, Biol. Diver. Conser. 2010, 3 (2), 163–169.

(14) Ma, Z.; Tian, J.; Fujii, I.; Ebizuka, Y.; Li, X., A new lignan from the seeds of Sphaerophysa salsula, Nat. Prod. Res. 2003, 17 (6), 423–425.

(15) Ma, Z.-j.; Li, X.; Li, N.; Wang, J.-H., Stilbenes from Sphaerophysa salsula, Fitoterapia 2002, 73 (4), 313–315.

(16) Erenler, R.; Yilmaz, S.; Aksit, H.; Sen, O.; Genc, N.; Elmastas, M.; Demirtas, I., Antioxidant activities of chemical constituents isolated from Echinops orientalis Trauv. Rec. Nat. Prod. 2014, 8 (1), 32–36.

(17) Elmastaş, M.; Telci, İ.; Akşit, H.; Erenler, R., Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices/Baharat olarak kullanılan nane genotiplerinin toplam fenolik içerikleri ve antioksidan kapasitelerinin karşılaştırılması, Turk. J. Biochem. 2015, 40(6), 456–462.

https://doi.org/10.1515/tjb-2015-0034

(18) Erenler, R.; Telci, I.; Ulutas, M.; Demirtas, I.; Gul, F.; Elmastas, M.; Kayir, O., Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt. J. Food Biochem. 2015, 39 (5), 622–630. https://doi.org/10.1111/jfbc.12168

(19) Erenler, R.; Geçer, E. N.; Genç, N.; Yanar, D., Antioxidant activity of silver nanoparticles synthesized from Tagetes erecta L. leaves. Int. J. Chem. Technol. 2021, 5 (2), 141–146.

https://doi.org/10.32571/ijct.1005275

(20) Gecer, E. N., Green synthesis of silver nanoparticles from Salvia aethiopis L. and their antioxidant activity. J. Inorg. Organomet. Polym. Mater. 2021, 31 (11), 4402–4409.

https://doi.org/10.1007/s10904-021-02057-3

(21) Guzel, A.; Aksit, H.; Elmastas, M.; Erenler, R., Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) Manden. and Scheng. Pharmacogn. Mag. 2017, 13(50), 316.

https://doi.org/10.4103/0973-1296.204556

(22) Elmastas, M.; Celik, S. M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ., Antioxidant activity of an Anatolian herbal tea — Origanum minutiflorum: isolation and characterization of its secondary metabolites, Int. J. Food Prop. 2018, 21 (1), 374–384.

https://doi.org/10.1080/10942912.2017.1416399.

(23) Dede, E.; Genc, N.; Elmastas, M.; Aksit, H.; Erenler, R., Chemical constituents isolated from Rhododendron ungernii with antioxidant profile. Nat. Prod. J. 2019, 9 (3), 238–243.

https://doi.org/10.2174/2210315508666181024114812.

(24) Iftikhar, M.; Zahoor, M.; Naz, S.; Nazir, N.; Batiha, G. E.-S.; Ullah, R.; Bari, A.; Hanif, M.; Mahmood, H. M., Green synthesis of silver nanoparticles using Grewia optiva leaf aqueous extract and isolated compounds as reducing agent and their biological activities, J. Nanomater. 2020, 2020.

https://doi.org/10.1155/2020/8949674

(25) Kumar, H. A. K.; Mandal, B. K.; Kumar, K. M.; Babu Maddinedi, S.; Kumar, T. S.; Madhiyazhagan, P.; Ghosh, A. R., Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 13–18.

https://doi.org/10.1016/j.saa.2014.03.024

(26) Gecer, E. N.; Erenler, R.; Temiz, C.; Genc, N.; Yildiz, I., Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Particul. Sci. Technol. 2021, 40 (1), 50–57.

https://doi.org/10.1080/02726351.2021.1904309

(27) Genc, N.; Yildiz, I.; Chaoui, R.; Erenler, R.; Temiz, C.; Elmastas, M., Biosynthesis, characterization and anti-oxidant activity of oleuropein-mediated silver nano-particles. Inorg. Nano-Met. Chem. 2021, 51(3), 411–419. https://doi.org/10.1080/24701556.2020.1792495

(28) Erenler, R.; Geçer, E. N., Green synthesis of silver nanoparticles from Astragalus logopodioides L. leaves. Turk J Agricul Food Sci Tech 2022, 10(6), 1112–1115. https://doi.org/10.24925/turjaf.v10i6.1112-1115.5190

(29) Geçer, E. N.; Erenler, R., Biosynthesis of silver nanoparticles using Dittrichia graveolens (Asteraceae) leaves extract: characterisation and assessment of their antioxidant activity. Turk. J. Biodiv. 2022, 5 (1), 50–56. https://doi.org/10.38059/biodiversity.1090549

(30) Sahin Yaglioglu, A.; Erenler, R.; Gecer, E. N.; Genc, N., Biosynthesis of silver nanoparticles using Astragalus flavesces leaf: identification, antioxidant activity, and catalytic degradation of methylene blue, J. Inorg. Organomet. Polym. Mater. 2022, 32, 3700–3707. https://doi.org/10.1007/s10904-022-02362-5

(31) Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S. A. A.; Harish, R., Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 2016, 180, 264–267.

https://doi.org/10.1016/j.matlet.2016.05.172.

(32) Hamelian, M.; Zangeneh, M. M.; Amisama, A.; Varmira, K.; Veisi, H., Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl. Organomet. Chem. 2018, 32(9), e4458. https://doi.org/10.1002/aoc.4458

(33) Singh, R.; Hano, C.; Nath, G.; Sharma, B., Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and anti-microbial activity against human pathogenic bacteria. Biomolecules 2021, 11(2), Article ID 299.

https://doi.org/10.3390/biom11020299

(34) Güzel, A.; Elmastaş, M., Antioxidant Activity, isolation and identification of some chemical constituents of Sphaerophysa kotschyana, KSU J. Agric. Nat. 2020, 23 (2), 289–296.

https://doi.org/10.18016/ksutarimdoga.vi.642953

Downloads

Published

2022-12-19

Versions

How to Cite

Genc, N. (2022). Synthesis and characterization of silver nanoparticles using Sphaerophysa kotschyana fruit and the assessment of their antioxidant activity: Antioxidant effect of nanoparticles. Macedonian Journal of Chemistry and Chemical Engineering, 41(2). https://doi.org/10.20450/mjcce.2022.2579

Issue

Section

Biotechnology