This is an outdated version published on 2022-12-27. Read the most recent version.

Novel tyrosinase-based bisphenol-A biosensor for the determination of bisphenol-A in bracket adhesive in orthodontics

Bisphenol-A Biosensor for bracket adhesive in orthodontics

Authors

  • Fatma Arslan Department of Chemistry, Faculty of Science, Gazi University, Ankara
  • Hasan Koçak Gazi University Graduate School of Natural and Applied Sciences, Gazi University Central Campus, Ankara
  • Onur Can Bodur Department of Chemistry, Faculty of Science, Gazi University, Ankara
  • Elvan Hasanoğlu Özkan Department of Chemistry, Faculty of Science, Gazi University, Ankara
  • Başak Arslan Department of Orthodontics, Faculty of Dentistry, Gazi University, Ankara
  • Nurşen Sarı Department of Chemistry, Faculty of Science, Gazi University, Ankara

DOI:

https://doi.org/10.20450/mjcce.2022.2585

Keywords:

Amperometry, Biosensor, Bisphenol A, Dendritic structure, Tyrosinase

Abstract

A novel biosensor for the determination of Bisphenol-A has been developed in this study. For this purpose, a carbon paste electrode modified with poly(amidoamine)-salicylidenimine platinum(II) (PAMAM-Sal-Pt(II)) and the tyrosinase enzyme was prepared. BPA determination was based on the electrochemical reduction of an enzymatically produced quinone compound at –0.15 V. Optimum working conditions for the prepared biosensor were investigated. The linear working range and detection limit were found to be 0.01–1.0 μM and 1 nM, respectively. The optimum pH value and working temperature were defined as 7.0 and 40 ℃, respectively. The reproducibility of the biosensor is very good. It was found that phenol, nitrophenol, urea, potassium nitrate, hexane, acetonitrile, and ethyl acetate do not interfere with the BPA determination. The prepared biosensor was used for the first time in dentistry for the determination of BPA in a resin-based composite material used as a bracket adhesive in orthodontics.

References

(1) Diamanti-Kandarakis, E.; Bourguignon, J. P.; Giudice, L. C.; Hauser, R.; Prins, G. S.; Soto, A. M.; Gore A. C., Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30 (2), 293–342. https://doi.org/ 10.1210/er.2009-0002

(2) Gulaboski, R.; Mirceski, V., Application of voltammetry in biomedicine recent achievements in enzymatic voltam-metry. Maced. J. Chem. Chem. 2020, 39 (2), 153–166. https://doi.org/10.20450/mjcce.2020.2152

(3) Mirceski, V.; Gulaboski, R., Recent achievements in square-wave voltammetry: A review. Maced. J. Chem. Chem. 2014, 33 (1), 1–12.

(4) Er, B.; Sarımehmetoğlu, B., The investigation of bi-sphenol a presence in canned tuna fish using high-performance liquid chromatography method. J. Anim. Vet. Adv. 2011, 10 (21), 69–74.

https://doi.org/10.3923/javaa.2011.2859.2862

(5) Tsai, W-T., Human health risk on environmental expo-sure to bisphenol-A: A review. J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxicol. Rev. 2006, 24 (2), 225–255. https://doi.org/ 10.1080/10590500600936482

(6) Fleisch, A. F.; Sheffield, P. E.; Chinn, C.; Edelstein, B. L.; Landrigan, P. J., Bisphenol A and related compounds in dental materials. Pediatrics 2010, 126 (4), 760–768. https://doi.org/ 10.1542/peds.2009-2693

(7) Flint, S.; Markle, T.; Thompson, S.; Wallace, E., Bi-sphenol A exposure, effects, and policy: a wildlife per-spective. J. Environ. Manage. 2012, 104, 19–34.

https://doi.org/10.1016/j.jenvman.2012.03.021

(8) Gould, J. C.; Leonard, L. S.; Maness, S. C., Wagner, B. L.; Conner, K.; Zacharewski, T.; Gaido, K. W., Bisphenol A interacts with the estrogen receptor α in a distinct man-ner from estradiol. Mol. Cell. Endocrinol. 1998, 142 (1–2), 203–214.

https://doi.org/10.1016/s0303-7207(98)00084-7

(9) Manfo, F. P. T.; Jubendradass, R.; Nantia, E. A.; Moun-dipa, P. F.; Mathur, P. P., Adverse effects of bisphenol A on male reproductive function. Rev. Environ. Contam. Toxicol. 2014, 228, 57–82.

https://doi.org/10.1007/978-3-319-01619-1_3

(10) Saal, F. S. V.; Nagel, S. C.; Coe, B. L.; Angle, B. M.; Taylor, J. A., The estrogenic endocrine disrupting chemi-cal bisphenol A (BPA) and obesity. Mol. Cell. Endo-crinol. 2012, 354 (1,2), 74–84.

https://doi.org/10.1016/j.mce.2012.01.001

(11) Inadera, H., Neurological effects of bisphenol A and its analogues. Int. J. Med. Sci. 2015; 12 (12), 926–936. https://doi.org/10.7150/ijms.13267

(12) Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Nakao, K., Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endo-crinol. Metab. 2002, 87 (11), 5185–5190.

https://doi.org/10.1210/jc.2002-020209

(13) Rahman, M. S.; Kwon, W. S.; Karmakar, P. C.; Yoon, S. J.; Ryu, B. Y.; Pang, M. G., Gestational exposure to bi-sphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ. Health Perspect. 2017, 125 (2), 238–45. https://doi.org/10.1289/EHP378

(14) LaKind, J. S.; Naiman, D. Q., Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey. J. Expo. Sci. Environ. Epidemiol. 2011, 21 (3), 272–279.

https://doi.org/10.1038/jes.2010.9

(15) Bolt, H. M.; Stewart J. D., Highlight report: the bisphenol A controversy. Arch. Toxicol. 2011, 85, 1491–1492. https://doi.org/10.1007/s00204-011-0785-z

(16) Tyl, R. W., Basic exploratory research versus guideline-compliant studies used for hazard evaluation and risk as-sessment: bisphenol A as a case study. Environ. Health Perspect. 2009, 117 (11), 1644–1651.

https://doi.org/10.1289/ehp.0900893

(17) Rubin, B. S.; Murray, M. K.; Damassa, D. A.; King, J. C.; Soto, A. M. Perinatal exposure to low doses of bi-sphenol A affects body weight, patterns of estrous cy-clicity, and plasma LH levels. Environ. Health Perspect. 2001, 109 (7), 675–680.

https://doi.org/10.1289/ehp.01109675

(18) Vandenberg, L. N.; Ehrlich, S.; Belcher, S. M.; Ben-Jonathan, N.; Dolinoy, D. C.; Hugo, E. R.; Soto, A. M., Low dose effects of bisphenol A: An integrated review of in vitro, laboratory animal, and epidemiology studies. En-docr. Disruptors. 2013, 1 (1), e26490.

https://doi.org/10.4161/endo.26490

(19) Bodur, S.; Erarpat, S.; Dalgıç Bozyiğit, G.; Selali Chor-mey, D.; Öz, E.; Özdoğan, N.; Bakırdere, S., A sensitive determination method for trace bisphenol A in bottled wa-ter and wastewater samples: Binary solvent liquid phase microextraction-quadrupole isotope dilution-gas chroma-tography-mass spectrometry. Microchem. J. 2020, 159, 105532.

https://doi.org/10.1016/j.microc.2020.105532

(20) Li, T.; Song, Y.; Dong, Z.; Shi, Y.; Fan, J., Hydrophobic deep eutectic solvents as extractants for the determination of bisphenols from food-contacted plastics by high per-formance liquid chromatography with fluorescence detec-tion. J. Chromatogr. A. 2020, 1621, 461087.

https://doi.org/10.1016/j.chroma.2020.461087

(21) Messaoud, N. B.; Ghicad, M. E.; Dridi, C.; Ali, B. M.; Brett, C. M. A., A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination. Talanta. 2018, 184, 388–393.

https://doi.org/10.1016/j.talanta.2018.03.031

(22) Pengyu, S.; Yunhua, W., An amperometric biosensor based on human cytochrome polyacrylamide hydrogel films for Bisphenol A determination. Sens. Actuators B Chem. 2013, 178, 113–118.

https://doi.org/10.1016/j.snb.2012.12.055

(23) Sanju, G., Development of FRET biosensor based on aptamer/functionalized graphene for ultrasensitive detec-tion of bisphenol A and discrimination from analogs. Nano-Struct. Nano-Objects. 2017, 10, 131–140.

https://doi.org/10.1016/j.nanoso.2017.03.013

(24) Daodong, P., Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol. Anal. Chim. Acta. 2015, 853, 297–302. https://doi.org/10.1016/j.aca.2014.11.004

(25) Portaccio M., Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocom-posite for Bisphenol A detection. Electrochim. Acta. 2013, 109, 340–347.

https://doi.org/10.1016/j.electacta.2013.07.129

(26) Gerardo, R. M., Biosensor immunoassays for the detec-tion of bisphenol-A. Analytica. Chimica. Acta. 2005, 558, 37–45. https://doi.org/10.1016/j.aca.2004.06.066.

(27) Yetim, N. K.; Sarı, N., Novel dendrimers containing re-dox mediator: Enzyme immobilization and applications. J. Mol. Struct. 2019, 1191, 158–164.

https://doi.org/10.1016/j.molstruc.2019.04.090

(28) Yin, H.; Zhou, Y.; Ai, S.; Chen, Q.; Zhu, X.; Liu, X.; Zhu, Lu-S., Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J. Hazard. Mater. 2010, 174 (1–3), 236–243. https://doi.org/ 10.1016/j.jhazmat.2009.09.041

(29) Yin, H.; Cui, L.; Chen, Q.; Shi, W.; Ai, S.; Zhu, Lu-S.; Lu, L., Amperometric determination of bisphenol A in milk using PAMAM–Fe3O4 modified glassy carbon elec-trode. Food. Chem. 2011, 125 (3), 1097–1103. https://doi.org/ 10.1016/j.foodchem.2010.09.098

(30) Peng, X.; Kang, L.; Pang, F.; Li, H.; Luo, R.; Luo, X.; Sun, F., A signal-enhanced lateral flow strip biosensor for ultrasensitive and on-site detection of Bisphenol A. Food. Agric. Immunol. 2018, 29, 216–227.

https://doi.org/10.1080/09540105.2017.1365822

(31) Yin, H.; Zhou, Y.; Ai, S.; Han, R.; Tang, T.; Zhu, L., Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim. Acta. 2010, 170 (1), 99–105.

https://doi.org/ 10.1007/s00604-010-0396-z

(32) Arslan, H.; Şenarslan, D.; Çevrimli, B. S.; Uzun, D.; Arslan, F., Preparation of carbon paste electrode contain-ing polyaniline-activated carbon composite for am-perometric detection of phenol. Bulg. Chem. Commun. 2018, 50, 16–20.

(33) Geary, W. J., The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1970, 7, 81–122.

(34) Hasanoğlu Özkan, E.; Sarı, N., Use of immobilized novel dendritic molecules as a marker for the detection of glu-cose in artificial urine. J. Mol. Struct. 2020, 1201, 127134. https://doi.org/10.1016/j.molstruc.2019.127134

(35) Senel, M.; Nergiz, C.; Çevik, E., Novel reagentless glu-cose biosensor based on ferrocene cored asymmetric PAMAM dendrimers. Sens. Actuators B: Chem. 2013, 176, 299–306.

https://doi.org/10.1016/j.snb.2012.10.072

(36) Dönmez, S.; Arslan, F.; Sarı, N.; Hasanoğlu Özkan, E.; Arslan, A., Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microspheres attached L-glycine. Biotechnol. Appl. Biochem. 2016, 64, 745–753.

https://doi.org/10.1002/bab.1533

(37) IR and Raman Spectra of Inorganic and Coordination Complexes, Part A: Theory and Applications in Inorganic Chemistry, 5th ed.; Nakamoto K.; Willey, New York, 1997.

(38) Bodur, O.C.; Hasanoğlu Özkan, E.; Çolak, Ö.; Arslan, H.; Sarı, N.; Dişli, A.; Arslan, F., Preparation of acetyl-choline biosensor for the diagnosis of Alzheimer's dis-ease. J. Mol. Struct. 2021, 1223, 129168.

https://doi.org/10.1016/j.molstruc.2020.129168

(39) Hasanoğlu Özkan, E.; Kurnaz Yetim, N.; Tümtürk, H.; Sarı, N., Immobilization of acetylcholinesterase on Pt(II) and Pt(IV) attached nanoparticles for the determination of pesticides. Dalton. Trans. 2015, 44, 16865–16872. https://doi.org/10.1039/C5DT03004H

(40) Xin, Q.; Wightman, R. M., Enzyme modified amperomet-ric sensors for cholineand acetylcholine with tetrathiaful-valene tetracyanoquinodimethane as the electron-transfer mediator. Anal. Chim. Acta. 1997, 341 (1), 43–51. https://doi.org/10.1016/S0003-2670(96)00492-8

(41) Bodur, O. C.; Dinç, S.; Özmen, M.; Arslan, F., A sensi-tive amperometric detection of neurotransmitter acetylcho-line using carbon dot-modified carbon paste electrode. Bi-otechnol. Appl. Biochem. 2021, 68 (1), 20–29. https://doi.org/10.1002/bab.1886

(42) Wu, L.; Lu, X.; Niu, K.; Chen, J., Tyrosinase nanocap-sule based nano-biosensor for ultrasensitive and rapid de-tection of bisphenol A with excellent stability in different application scenarios. Biosens. Bioelectron. 2020, 165 (3), 112407.

https://doi.org/10.1016/j.bios.2020.112407

(43) Sýs, M.; Obluková, M.; Kolivoška, V.; Sokolová, R.; Korecká, L.; Mikysek, T., Catalytic properties of various-ly immobilized mushroom tyrosinase: A kinetic study for future development of biomimetic amperometric biosen-sors. J. Electroanal. Chem. 2020, 864, 114066. https://doi.org/10.1016/j.jelechem.2020.114066

(44) Erkmen, C.; Kurbanoglu, S.; Uslu, B., Fabrication of poly(3,4-ethylenedioxythiophene)-iridium oxide nano-composite based tyrosinase biosensor for the dual detec-tion of catechol and azinphos methyl. Sens. Actuators B: Chem. 2020, 316, 128121.

https://doi.org/10.1016/j.snb.2020.128121

(45) Kochana, J.; Wapiennik, K.; Kozak, J.; Knihnicki, P.; Pollap, A.; Woźniakiewicz, M.; Kościelniak, P., Tyrosi-nase-based biosensor for determination of bisphenol A in a flow-batch system. Talanta. 2015, 144, 163–170. https://doi.org/10.1016/j.talanta.2015.05.078.

(46) Soussou, A.; Gammoudi, I.; Moroté, F.; Mathelié-Guinlet, M.; Kalboussi, A.; Baccar, Z. M.; Grauby-Heywang, C., Amperometric polyphenol biosensor based on tyrosinase immobilization on CoAl layered double hy-droxide thins films. Procedia Eng. 2016, 168, 1131–1134. https://doi.org/10.1016/j.proeng.2016.11.371

(47) Qu, Z.; Na, W.; Liu, X.; Liu, H.; Su, X., A novel fluores-cence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots. Anal. Chim. Acta. 2018, 997, 52–59. https://doi.org/10.1016/j.aca.2017.10.010.

(48) Manan, F. A. A.; Hong, W. W.; Abdullah, J.; Yusof, N. A.; Ahmad. I., Nanocrystalline cellulose decorated quan-tum dots based tyrosinase biosensor for phenol determi-nation. Mater. Sci. Eng. C. 2019, 99, 37–46.

https://doi.org/ 10.1016/j.msec.2019.01.082

(49) Wong, A.; Santos, A.; Fatibello Filho, O.; Sotomayor, M., Amperometric tyrosinase biosensor based on carbon black paste electrode for sensitive detection of catechol in environmental samples. Electroanalysis. 2020, 33, 431–437. https://doi.org/10.1002/elan.202060084

(50) Mercante, L. A.; Iwaki, L. E. O.; Scagion, V. P.; Jr Oliveira; O. N.; Mattoso, L. H. C.; Correa, D. S. Electro-chemical Detection of Bisphenol A by Tyrosinase Immo-bilized on Electrospun Nanofibers Decorated with Gold Nanoparticles. Electrochem. 2021, 2, 41–49. https://doi.org/10.3390/electrochem2010004

(51) Malkiewicz, K.; Turlo, J.; Marciniuk-Kluska, A.; Grzech-Lesniak, K.; Gasior, M.; Kluska, M., Release of bi-sphenol A and its derivatives from orthodontic adhesive systems available on the European market as a potential health risk factor. Ann. Agric. Environ. Med. 2015, 22 (1), 172–177.

https://doi.org/10.5604/12321966.1141390

(52) Eliades, T.; Hiskia, A.; Eliades, G.; Athanasiou, A. E., Assessment of bisphenol-A release from orthodontic ad-hesives. Am. J. Orthod. Dentofacial. Orthop. 2007, 131 (1), 72–75. https://doi.org/10.1016/j.ajodo.2006.08.013

(53) Eliades, T.; Eliades, G.; Brantley, W. A.; Johnston, W. M. Residual monomer leaching from chemically cured and visible light-cured orthodontic adhesives Am. J. Or-thod. Dentofacial. Orthop. 1995, 108 (3), 316–321. https://doi.org/10.1016/s0889-5406(95)70027-7

Downloads

Published

2022-12-27

Versions

How to Cite

Arslan, F., Koçak, H., Bodur, O. C., Hasanoğlu Özkan, E., Arslan, B., & Sarı, N. (2022). Novel tyrosinase-based bisphenol-A biosensor for the determination of bisphenol-A in bracket adhesive in orthodontics: Bisphenol-A Biosensor for bracket adhesive in orthodontics. Macedonian Journal of Chemistry and Chemical Engineering, 41(2). https://doi.org/10.20450/mjcce.2022.2585

Issue

Section

Biotechnology