Nutritional and antioxidant profile of the medicinal mushrooms Phellinus torulosus and P. igniarius: influence of different extractants on bioactivity

Authors

  • Ljupčo Krstanoski Department of Experimental Biochemistry Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia
  • Katerina Rusevska Mycological Laboratory, Department of Botany, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia
  • Jasmina Dimitrova-Šumkovska Mycological Laboratory, Department of Botany, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia https://orcid.org/0000-0002-6333-7669

DOI:

https://doi.org/10.20450/mjcce.2023.2613

Keywords:

Medicinal fungi, Extraction, Bioactive content, Antiradical activity

Abstract

The increased demand for natural, safe and dietary antioxidant sources stimulated the exploration of in-vitro reducing and scavenging potentials of extracts from wild medicinal and non-toxic mushrooms with intention of acknowledging their therapeutic values. Based on the findings about enhanced potency of extracts vs. powder, as well as highlighting the antioxidant potential of underexploited wild species from Macedonian territory, our investigations were aimed at screening the reducing and scavenging profiles of hot water (HWEs), cold water (CWEs) and methanol extracts (MEs) from Phellinus torulosus and P. igniarius to promote their usage as nutraceuticals and for medicinal use. MEs from both species exhibited superior scavenging activity over radicals: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and nitric oxide (NO); enhanced reducing properties and higher total antioxidant capacity, owed to their significantly higher phenol and flavonoid content. In contrast, CWEs established superior ability for inhibiting the lipid peroxides level and glycosylated protein adducts but exposed lower antioxidant properties and reducing abilities. HWE from P. torulosus was a more efficient radical scavenger than P. igniarius, with higher reducing and in-vitro antiglycation capacities, thereby proving its suitability for the treatment against disorders induced by oxidative stress.

References

(1) Gómez Román, M.; Mantilla, N.; Flórez, S.; De Mandal, S.; Passari, A.; Ruiz, B.; Rodriguez-Sanoja, R.; Sánchez, S. Antimicrobial and Antioxidant Potential of Wild Edible Mushrooms. In An Introduction to Mushroom; A.K. Passari and S. Sánchez, Ed; 2020; https://doi.org/10.5772/intechopen.90945.

(2) Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and systems biotechnology. 2016, 2 (1), 13-22. https://doi.org/10.1016/j.synbio.2016.12.001

(3) Du, B.; Zhu, F.; Xu, B. An insight into the anti-inflammatory properties of edible and medicinal mushrooms. J Funct Foods. 2018, 47, 334-342. https://doi.org/https://doi.org/10.1016/j.jff.2018.06.003

(4) Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The antioxidant potential of different edible and medicinal mushrooms. Biomed Pharmacother. 2022, 147, 112621. https://doi.org/10.1016/j.biopha.2022.112621

(5) Cheung, P.C.K. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Science and Human Wellness. 2013, 2 (3), 162-166. https://doi.org/https://doi.org/10.1016/j.fshw.2013.08.001

(6) Azeem, U.; Dhingra, G.s.; Shri, R. Comparative analysis of taxonomy, physicochemical characteristics and mycochemical screening of two wood degrading Phellinus mushrooms (P. fastuosus(Lév.)S. Ahmad and P. sanfordii (Lloyd) Ryvarden) Journal of Pharmacognosy and Phytochemistry 2018, 7 (1), 2151-2158.

(7) Yang, K.; Zhang, S.; Ying, Y.; Li, Y.; Cai, M.; Guan, R.; Hu, J.; Sun, P. Cultivated Fruit Body of Phellinus baumii: A Potentially Sustainable Antidiabetic Resource. ACS Omega. 2020, 5 (15), 8596-8604. https://doi.org/10.1021/acsomega.9b04478

(8) Azeem, U.; Dhingra, G.S.; Shri, R. Pharmacological potential of wood inhabiting fungi of genus Phellinus Quél.: An overview. Journal of Pharmacognosy and Phytochemistry. 2018, 07 (02), 1161-1171.

(9) Jung, G.H.; Kang, J.H. Efficacy of Phellinus linteus (sanghuang) extract for improving immune functions: Study protocol for a randomized, double-blinded, placebo-controlled pilot trial. Medicine. 2020, 99 (3), e18829. https://doi.org/10.1097/md.0000000000018829

(10) Pharmacopoeia, C. Chinese Pharmacopoeia Commission. 2015 (10th edition)

(11) Seephonkai, P.; Samchai, S.; Thongsom, A.; Sunaart, S.; Kiemsanmuang, B.; Chakuton, K. DPPH Radical Scavenging Activity and Total Phenolics of Phellinus Mushroom Extracts Collected from Northeast of Thailand. Chinese Journal of Natural Medicines. 2011, 9 (6), 441-445. https://doi.org/https://doi.org/10.3724/SP.J.1009.2011.00441

(12) Yang, N.-C.; Wu, C.-C.; Liu, R.H.; Chai, Y.-C.; Tseng, C.Y. Comparing the functional components, SOD-like activities, antimutagenicity, and nutrient compositions of Phellinus igniarius and Phellinus linteus mushrooms. Journal of Food and Drug Analysis. 2016, 24 (2), 343-349. https://doi.org/https://doi.org/10.1016/j.jfda.2015.11.007

(13) Yin, R.-H.; Zhao, Z.-Z.; Ji, X.; Dong, Z.-J.; Li, Z.-H.; Feng, T.; Liu, J.-K. Steroids and Sesquiterpenes From Cultures of the Fungus Phellinus igniarius. Natural Products and Bioprospecting. 2015, 5 (1), 17-22. https://doi.org/10.1007/s13659-014-0045-z

(14) Li, L.; Wu, G.; Choi, B.Y.; Jang, B.G.; Kim, J.H.; Sung, G.H.; Cho, J.Y.; Suh, S.W.; Park, H.J. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord. BioMed Research International. 2014, 2014, 218274. https://doi.org/10.1155/2014/218274

(15) Li, B.; Lu, F.; Suo, X.; Nan, H.; Li, B. Antioxidant properties of cap and stipe from Coprinus comatus. Molecules. 2010, 15 (3), 1473-86. https://doi.org/10.3390/molecules15031473

(16) Pawar, H.; D’Mello, P. Spectrophotometric estimation of total polysaccharides in Cassia tora gum. Journal of Applied Pharmaceutical Science. 2011, 1, 93-95.

(17) Deveci, E.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J Food Biochem. 2019, 43 (9), e12965. https://doi.org/https://doi.org/10.1111/jfbc.12965

(18) Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protocols. 2007, 2 (4), 875-877.

(19) Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555-559

(20) Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995, 28 (1), 25-30. https://doi.org/10.1016/s0023-6438(95)80008-5

(21) Shori, A.B.; Baba, A.S. Comparative antioxidant activity, proteolysis and in vitro α-amylase and α-glucosidase inhibition of Allium sativum-yogurts made from cow and camel milk. Journal of Saudi Chemical Society. 2014, 18 (5), 456-463. https://doi.org/10.1016/j.jscs.2011.09.014

(22) Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999, 26 (9-10), 1231-7.

(23) Kumar, A.; Kumar, D. Development of antioxidant rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture. J Food Sci Technol. 2016, 53 (1), 667-75. https://doi.org/10.1007/s13197-015-1997-7

(24) Szydlowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szlyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008, 76 (4), 899-905. https://doi.org/10.1016/j.talanta.2008.04.055

(25) Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999, 269 (2), 337-41. https://doi.org/10.1006/abio.1999.4019

(26) Ng, T.B.; Liu, F.; Wang, Z.T. Antioxidative activity of natural products from plants. Life Sci. 2000, 66 (8), 709-23. https://doi.org/10.1016/s0024-3205(99)00642-6

(27) Seri, A.; Khorsand, M.; Rezaei, Z.; Hamedi, A.; Takhshid, M.A. Inhibitory Effect of Bunium Persicum Hydroalcoholic Extract on Glucose-Induced Albumin Glycation, Oxidation, and Aggregation In Vitro. Iranian journal of medical sciences. 2017, 42 (4), 369-376.

(28) Ulziijargal, E.; Mau, J.L. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushrooms. 2011, 13 (4), 343-9. https://doi.org/10.1615/intjmedmushr.v13.i4.40

(29) Naraian, R.; Dixit, B. Nutritional Value of Three Different Oyster Mushrooms Grown on Cattail Weed Substrate. Archives of Biotechnology and Biomedicine. 2017, 1, 061-066. https://doi.org/10.29328/journal.hjb.1001006

(30) Srikram, A.; Supapvanich, S. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agriculture and Natural Resources. 2016, 50 (6), 432-436. https://doi.org/https://doi.org/10.1016/j.anres.2016.08.001

(31) Ho, L.-H.; Zulkifli, N.A.; Tan, T.C. Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development In An Introduction to Mushroom; A.K. Passari and S. Sánchez, Ed; IntechOpen, 2020; https://doi.org/10.5772/intechopen.91827.

(32) Zhang, H.; Chen, R.; Zhang, J.; Bu, Q.; Wang, W.; Liu, Y.; Li, Q.; Guo, Y.; Zhang, L.; Yang, Y. The integration of metabolome and proteome reveals bioactive polyphenols and hispidin in ARTP mutagenized Phellinus baumii. Sci Rep. 2019, 9 (1), 16172. https://doi.org/10.1038/s41598-019-52711-7

(33) Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Villegas-Ochoa, M.A.; Esqueda, M.; Gonzalez-Aguilar, G.A.; Calderon-Lopez, Y. Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Rev Iberoam Micol. 2012, 29 (3), 132-8. https://doi.org/10.1016/j.riam.2011.09.004

(34) Butkhup, L.; Samappito, W.; Jorjong, S. Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci Biotechnol. 2017, 27 (1), 193-202. https://doi.org/10.1007/s10068-017-0237-5

(35) Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio compounds of edible mushrooms: in vitro antioxidant and antimicrobial activities. LWT. 2019, 107, 214-220. https://doi.org/https://doi.org/10.1016/j.lwt.2019.03.017

(36) Im, K.H.; Baek, S.A.; Choi, J.; Lee, T.S. Antioxidant, Anti-Melanogenic and Anti-Wrinkle Effects of Phellinus vaninii. Mycobiology. 2019, 47 (4), 494-505. https://doi.org/10.1080/12298093.2019.1673595

(37) Yoon, K.-N.; Jang, H.S. Antioxidant and Antimicrobial Activities of Fruiting Bodies of Phellinus gilvus Collected in Korea. The Korean Journal of Clinical Laboratory Science. 2016, 48 (4), 355-364. https://doi.org/10.15324/kjcls.2016.48.4.355

(38) Packialakshmi, B.; Sudha, G.; Marimuthu, C. Total phenol, flavonoid and antioxidant properties of Auricularia auricula-judae. International Journal of Pharmacy and Pharmaceutical Sciences. 2015, 7, 233-237.

(39) Yefrida; Suyani, H.; Alif, A.; Efdi, M.; Hermansyah, A. Modification of phenanthroline method to determine antioxidant content in tropical fruits methanolic extract. Research Journal of Chemistry and Environment. 2018, 22, 28-35.

(40) Thammavong, S.; Phadungkit, M.; Laovachirasuwan, P.; Naksuwankul, K.; Saentaweesuk, W.; Silsirivanit, A.; Wongkham, S. Antioxidant and Cytotoxic Activity of Phellinus Mushrooms from Northeast Thailand. Research Journal of Pharmacognosy. 2021, 8 (1), 91-99. https://doi.org/10.22127/rjp.2020.251089.1632

(41) Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.M.; Pourmorad, F. Nitric oxide radical scavenging potential of some Elburz medicinal plants. African Journal of Biotechnology. 2010, 9 (32), 5212-5217.

(42) Dhanabalan, M.; Sundaram, R.; Ayyasamy, P. Free radical scavenging activity of methanolic extract of pleurotus Florida mushroom. International Journal of Pharmacy and Pharmaceutical Sciences. 2013, 5

(43) Starowicz, M.; Zieliński, H. Inhibition of Advanced Glycation End-Product Formation by High Antioxidant-Leveled Spices Commonly Used in European Cuisine. Antioxidants (Basel, Switzerland). 2019, 8 (4), 100. https://doi.org/10.3390/antiox8040100

(44) Kazeem, M.I.; Bankole, H.A.; Fatai, A.A.; Adenowo, A.F.; Davies, T.C. Antidiabetic Functional Foods with Antiglycation Properties. In Bioactive Molecules in Food; J.-M. Mérillon and K.G. Ramawat, Ed; Springer International Publishing, 2017; pp. 1-29 https://doi.org/10.1007/978-3-319-54528-8_16-1.

(45) Moe, T.S.; Win, H.H.; Hlaing, T.T.; Lwin, W.W.; Htet, Z.M.; Mya, K.M. Evaluation of in vitro antioxidant, antiglycation and antimicrobial potential of indigenous Myanmar medicinal plants. Journal of Integrative Medicine. 2018, 16 (5), 358-366. https://doi.org/https://doi.org/10.1016/j.joim.2018.08.001

(46) Yap, H.-Y.Y.; Tan, N.-H.; Ng, S.-T.; Tan, C.-S.; Fung, S.-Y. Inhibition of Protein Glycation by Tiger Milk Mushroom [Lignosus rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-Related Metabolic Pathways by Genomic and Transcriptomic Data Mining. Front Pharmacol. 2018, 9, 103-103. https://doi.org/10.3389/fphar.2018.00103

(47) Dogan, H.; Coteli, E.; Karatas, F. Determination of Glutathione, Selenium, and Malondialdehyde in Different Edible Mushroom Species. Biol Trace Elem Res. 2016, 174 (2), 459-463. https://doi.org/10.1007/s12011-016-0715-2

(48) Félix, R.; Valentão, P.; Andrade, P.B.; Félix, C.; Novais, S.C.; Lemos, M.F.L. Evaluating the In Vitro Potential of Natural Extracts to Protect Lipids from Oxidative Damage. Antioxidants. 2020, 9 (3), 231.

(49) Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol. 2012, 50 (5), 1201-7. https://doi.org/10.1016/j.fct.2012.02.013

(50) Abdullah, N.; Ismail, S.M.; Aminudin, N.; Shuib, A.S.; Lau, B.F. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities. Evid Based Complement Alternat Med. 2012, 2012, 464238. https://doi.org/10.1155/2012/464238

Downloads

Published

2023-04-28 — Updated on 2023-07-01

Versions

How to Cite

Krstanoski, L., Rusevska, K. ., & Dimitrova-Šumkovska, J. (2023). Nutritional and antioxidant profile of the medicinal mushrooms Phellinus torulosus and P. igniarius: influence of different extractants on bioactivity. Macedonian Journal of Chemistry and Chemical Engineering, 42(1), 37–46. https://doi.org/10.20450/mjcce.2023.2613 (Original work published April 28, 2023)

Issue

Section

Natural Products