This is an outdated version published on 2023-06-26. Read the most recent version.

Influence of electrodeposition regime and Sn:Pd ratios in Sn-Pd electrocatalysts on ethanol oxidation reaction

Authors

DOI:

https://doi.org/10.20450/mjcce.2023.2702

Keywords:

electrodeposition, tin, palladium, electrocatalyst, electrooxidation

Abstract

A series of bimetallic Sn-Pd catalysts were prepared by a template-free two step electrodeposition method. According to this method, Sn was electrodeposited firstly in potentiostatic or galvanostatic regime on Cu electrodes in the form of dendrites, then Pd was galvanostatically electrodeposited in the second step on the electrode with the electrodeposited Sn dendrites. The produced Sn-Pd electrocatalysts were compared with an electrocatalyst obtained by Pd electrodeposition on a bare Cu electrode. The morphological and elemental analysis of Sn-Pd and Pd electrocatalysts was performed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. The dendrites of various shapes and degree of branching were obtained by Sn deposition depending on electrodeposition regime, while Pd was electrodeposited in a form of compact Pd islands on both Sn dendrites and the Cu electrode. Cyclic voltammetry (CV) was applied for the electrochemical examination of Sn-Pd and Pd catalysts towards the ethanol oxidation reaction (EOR) in the alkaline solution. The electrocatalyst Sn0.6-Pd0.4 with an atomic ratio of 60 at.% Sn-40 at.% Pd showed higher oxidation efficiency and better tolerance towards intermediate species in EOR than the other examined electrocatalysts . It was shown that the lower fraction of Pd, relative to Sn, was crucial to achieving optimal synergy of Sn with Pd thus contributing to enhanced electrochemical behavior regarding EOR.

References

(1) Halim, E. M.; Chemchoub, S.; El Attar, A.; Salih, F. E.; Oularbi, L.; El Rhazi, M., Recent advances in anode metallic catalysts supported on conducting polymer-based materials for direct alcohol fuel cells. Front. Energy Res. 2022, 10, 843736.

https://doi.org/10.3389/fenrg.2022.843736

(2) Serov, A.; Kwak, C., Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl. Catal. B ‒ Environ. 2009, 90, 313–320.

https://doi.org/10.1016/j.apcatb.2009.03.030

(3) Wang, K. W.; Kang, W. D.; Wei, Y. C.; Liu, C. W.; Su, P. C.; Chen, H. S.; Chung, S. R., Promotion of PdCu/C catalysts for ethanol oxidation in alkaline solution by SnO2 modifier. Chemcatchem 2012, 4, 1154 – 1161. https://doi.org/10.1002/cctc.201100500

(4) Guo, J.; Jiao, S.; Ya, X.; Zheng, H.; Wang, R.; Jiao Yu, J.; Wang, H.; Zhang, Z.; Liu, W.; He, C.; Fu, X. Ultrathin Pd-based perforated nanosheets for fuel cells electrocatalysis. Chemelectrochem 2022, 9, 202200729. https://doi.org/10.1002/celc.202200729

(5) Elsaid, K.; Abdelfatah, S.; Abdel Elabsir, A. M.; Hassiba, R. J.; Ghouri, Z. K.; Vechot, L., Direct alcohol fuel cells: Assessment of the fuel’s safety and health aspects. Int. J. Hydrogen Energ. 2021, 46, 30658–30668. https://doi.org/10.1016/j.ijhydene.2020.12.009

(6) Bianchini, C.; Shen, P. K., Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183‒4206. https://doi.org/10.1021/cr9000995

(7) Chiu, H.; Brodusch, N.; Gauvin, R.; Guerfi, A.; Zaghib, K., Demopoulos, G. P., Aqueous synthesized nanostructured Li4Ti5O12 for high-performance lithium ion battery anodes. J. Electrochem. Soc. 2013, 160, A3041‒A3047. DOI:10.1149/2.008305jes

(8) Singh, S.; Sharma, S., Temperature dependent selective detection of ethanol and methanol using MoS2/TiO2 composite. Sensors Actuat. B ‒ Chem. 2022, 350, 130798. https://doi.org/10.1016/j.snb.2021.130798

(9) Xu, J.; Wilson, A. R.; Rathmell, A. R.; Howe, J.; Chi, M. Wiley, B. J. Synthesis and catalytic properties of Au–Pd nanoflowers. ACS Nano 2011, 5, 6119‒6127.

https://doi.org/10.1021/nn201161m

(10) Liang, Y.; Ma, L.; Cui, Z.; Li, Z.; Zhu, S.; Yang, X., Facile in situ hydrothermal method for synthesis of SrTiO3/TiO2 nanostructures with improved photo-electrochemical activities. J. Electrochem. Soc. 2013, 160, H704‒H709. DOI:10.1149/2.045310jes

(11) Cao, Z.; Lao, X.; Gao, F.; Yang, M.; Sun, J.; Liu, X.; Su, R.; Chen, J.; Guo, P., Improvement of electrocatalytic alcohol oxidation by tuning the phase structure of atomically ordered intermetallic Pd-Sn nanowire networks. Sci. China Mater. 2022, 65(10), 2694–2703. https://doi.org/10.1007/s40843-022-2069-8

(12) Fontes, E. H.; Ramos, C. E.; Nandenha, J.; Piasentin, R. M.; Neto, A. O.; Landers, R., Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium. Int. J. Hydrogen Energ. 2019, 44, 937‒951.

https://doi.org/10.1016/j.ijhydene.2018.11.049

(13) Geraldes, A. N.; Furtunato da Silva, D.; Martins da Silva, J. C.; Antonio de Sa, O.; Spinace, E. V.; Neto, A. O; Dos Santos, M. C., Palladium and palladiumetin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell. J. Power Sources 2015, 275, 189‒199.

http://dx.doi.org/10.1016/j.jpowsour.2014.11.024

(14) Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X., Palladium–tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal. 2012, 2, 287‒297.

https://doi.org/10.1021/cs2005955

(15) Makin Adam, A. M.; Zhu, A.; Ning, L.; Deng, M.; Zhang, Q.; Liu, Q., Carbon supported PdSn nanocatalysts with enhanced performance for ethanol electrooxidation in alkaline medium. Int. J. Hydrogen Energ. 2019, 44, 20368‒20379.

https://doi.org/10.1016/j.ijhydene.2019.06.013

(16) Pinheiro, V. S.; Souza, F. M.; Gentil, T. C.; Nascimento, A. N.; Bohnstedt, P.; Parreira, L. S.; Paz, E. C.; Hammer, P.; Sairre, M. I.; Batista, B. L.; Santos, M. C. Renew. Energ. 2020, 158, 49‒63.

https://doi.org/10.1016/j.renene.2020.05.050

(17) Selepe, C. T.; Gwebu, S. S.; Matthews, T.; Mashola, T. A.; Sikeyi, L. L.; Zikhali, M.; Mbokazi, S. P.; Makhunga, T. S.; Adegoke, K. A.; Maxakato, N. W., Electro-catalytic properties of palladium and palladium alloy electro-catalysts supported on carbon nanofibers for electro oxidation of methanol and ethanol in alkaline medium. Catalysts 2022, 12, 608.

https://doi.org/10.3390/catal12060608

(18) Ning, L.; Liu, X.; Deng, M.; Huang, Z.; Zhu, A.; Zhang, Q.; Liu, Q., Palladium-based nanocatalysts anchored on CNT with high activity and durability for ethanol electro-oxidation. Electrochim. Acta 2019, 297, 206‒214. https://doi.org/10.1016/j.electacta.2018.11.188

(19) Wang, X.; Zhang, C.; Chi, M.; Wei, M.; Dong, X.; Zhu, A.; Zhang, Q.; Liu, Q., Two-dimensional PdSn/TiO2-GO towards ethanol electrooxidation catalyst with high stability. Int. J. Hydrogen Energ. 2021, 44, 19129‒19139. https://doi.org/10.1016/j.ijhydene.2021.03.058

(20) Bliznakov, S.; Vukmirovic, M.; Sutter, E.; Adzic, R., Electrodeposition of Pd nanowires and nanorods on carbon nanoparticles. Maced. J. Chem. Chem. Eng. 2011, 30(1), 19–27.

(21) Popov, K. I.; Djokić, S. S.; Nikolić, N. D.; Jović, V. D., Morphology of Electrochemically and Chemically Deposited Metals; Springer: New York, NY, USA, 2016. https://doi.org/10.1007/978-3-319-26073-0

(22) Miao, B.; Wu, Z. P.; Zhang, M.; Chen, Y.; Wang, L. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction. J. Phys. Chem. C 2018, 122, 22448−22459. https://doi.org/10.1021/acs.jpcc.8b05812

(23) Lović, J. D.; Eraković Pantović, S.; Rakočević, L. Z.; Ignjatović, N. L.; Dimitrijević, S. B.; Nikolić, N. D., A novel two-step electrochemical deposition method for Sn-Pd electrocatalyst synthesis for a potential application in direct ethanol fuel cells. Processes 2023, 11, 120. https://doi.org/10.3390/pr11010120

(24) Xaba, N.; Modibedi, R. M.; Mathe, M. K.; Khotseng, L. E., Pd, PdSn, PdBi, and PdBiSn nanostructured thin films for the electro-oxidation of ethanol in alkaline media. Electrocatalysis 2019, 10, 332–341.

https://doi.org/10.1007/s12678-019-0511-9

(25) Mavrokefalos, C. K.; Hasan, M.;, Khunsin, W.; Schmidt, M.; Maier, S. A.; Rohan, J. F.; Compton, R. C.; Foord, J. S., Electrochemically modified boron-doped diamond electrode with Pd and Pd-Sn nanoparticles for ethanol electrooxidation. Electrochim. Acta 2017, 243, 310–319. http://dx.doi.org/10.1016/j.electacta.2017.05.039

(26) Lee, S. H.; Jo, Y. R.; Noh, Y.; Kim, B. J.; Kim, W. B., Fabrication of hierarchically branched SnO2 nanowires by two-step deposition method and their applications to electrocatalyst support and Li ion electrode. J. Power Sources 2017, 367, 1‒7.

http://dx.doi.org/10.1016/j.jpowsour.2017.09.045

(27) Nikolić, N. D.; Lović, J. D.; Maksimović, V. M.; Živković, P. M., Morphology and structure of electrolytically synthesized tin dendritic nano-structures. Metals 2022, 12(7), 1201.

https://doi.org/10.3390/met12071201

(28) Nikolić, N. D.; Lović, J. D.; Maksimović, V. M. The control of morphology and structure of galvanostatically produced tin dendrites by analysis of chrono-potentiometry response. J. Solid State Electrochem. 2023. https://doi.org/10.1007/s10008-023-05380-6

(29) Ding, L. X.; Wang, A. L.; Ou, Y. N.; Li, Q.; Guo, R.; Zhao, W. X.; Tong,Y. X.; Li, G. R., Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation. Sci. Rep. 2013, 3, 1181. https://doi.org/10.1038/srep01181

(30) Huang, J.; Ji, L.; Li, X.; Wu, X.; Qian, N.; Li, J.; Yan, Y.; Yang, D.; Zhang, H., Facile synthesis of PdSn alloy octopods through the Stranski–Krastanov growth mechanism as electrocatalysts towards the ethanol oxidation reaction. Crystengcomm, 2022, 24, 3230. https://doi.org/10.1039/D2CE00242F.

(31) Li, S.; Shu, J.; Ma, S.; Yang, H.; Jin, J.; Zhang, X.; Jin, R., Engineering three-dimensional nitrogen-doped carbon black embedding nitrogen-doped graphene anchoring ultrafine surface-clean Pd nanoparticles as efficient ethanol oxidation electrocatalyst. Appl. Catal. B 2021, 280, 119464.

https://doi.org/10.1016/j.apcatb.2020.119464

(32) Lima, F. H. B.; Profeti, D.; Lizcano-Valbuena, W. H.; Ticianelli, E. A.; Gonzalez, E. R., Carbon-dispersed Pt–Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J. Electroanal. Chem. 2008, 617(2), 121‒129.

https://doi.org/10.1016/j.jelechem.2008.01.024

(33) Lović, J. D.; Jović, V. D., Electrodeposited Pd and PdNi coatings as electrodes for the electrochemical oxidation of ethanol in alkaline media. J. Solid State Electrochem. 2017, 21, 2433‒2441.

https://doi.org/10.1007/s10008-017-3595-2

(34) Hasan, M.; Khunsin, W.; Mavrokefalos, C. K.; Maier, S. A.; Rohan, J. F.; Foord, J. S., Facile electrochemical synthesis of Pd nanoparticles with enhanced electrocatalytic properties from surfactant-free electrolyte. ChemElectroChem 2018, 5(4), 619‒629. https://doi.org/10.1002/celc.201701132

(35) Santos, R. M. I. S.; Nakazato, R. Z.; Ciapina, E. G., The dual role of the surface oxophilicity in the electro-oxidation of ethanol on nanostructured Pd/C in alkaline media. J. Electroanal. Chem. 2021, 894, 115342. https://doi.org/10.1016/j.jelechem.2021.115342

(36) Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D., Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203‒2208. https://doi.org/10.1016/j.electacta.2008.10.034

(37) Gulaboski, R., The future of voltammetry, Maced. J. Chem. Chem. Eng. 2022, 41(2), 151–162.

https://doi.org/10.20450/mjcce.2022.2555

(38) Gulaboski, R.; Mirčeski, V., Surface catalytic mechanism-theoretical study under conditions of differential square-wave voltammetry, Maced. J. Chem. Chem. Eng. 2022, 41(1), 1–10.

https://doi.org/10.20450/mjcce.2022.2404

Downloads

Published

2023-06-26

Versions

How to Cite

Lović, J., Nikolić, N., Živković, P., Dimitrijević, S., & Stevanović, M. (2023). Influence of electrodeposition regime and Sn:Pd ratios in Sn-Pd electrocatalysts on ethanol oxidation reaction. Macedonian Journal of Chemistry and Chemical Engineering, 42(1). https://doi.org/10.20450/mjcce.2023.2702

Issue

Section

Electrochemistry