Microwave synthesis of novel chenodeoxycholic acid esters and comparative study of chromatographic behavior and lipophilicity





chenodeoxycholic acid esters, diols, lipophilicity, liquid chromatography, microwaves


In this study, eco-friendly microwave-assisted esterification reactions of chenodeoxycholic acid with medium-chain diols (1,2-ethanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, and 1,10-decanediol) or tetraethylene glycol were accomplished. The synthesized bile acid esters were obtained with high yields (up to 81 %) and purity in a short reaction time (15 min). It is shown that the microwave technique is a suitable method for the preparation of chenodeoxycholic acid esters. In order to obtain detailed insight into the lipophilic behavior of the studied chenodeoxycholic acid esters, a comparative study of chromatographic behavior and lipophilicity was performed. Also, the present study deals with the estimation of pH – logD profiles in order to get an overview of the changes in lipophilicity related to the pH value changes. The obtained results indicate that studied compounds have logD values in the range acceptable for potential drug candidates. Chromatographic lipophilicity of synthesized chenodeoxycholic acid esters successfully correlate with in silico lipophilicity descriptors.

Author Biographies

Anamarija Mandić, University of Novi Sad, Bulevar Cara Lazara 1, Novi Sad, Serbia

Institute of Food Technology

Bojana Vasiljević, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, Serbia

Vinča Institute of Nuclear Sciences


(1) Mishra, R.; Mishra, S., Updates in bile acid-bioactive molecule conjugates and their applications, Steroids 2020, 159, 108639–108654.


(2) Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M., Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles, Front. Pharmacol. 2018, 9, 1283–1306.


(3) Sepe, V.; Distrutti, E.; Fiorucci, S.; Zampella, A., Far-nesoid X receptor modulators 2014-present: A patent re-view, Expert Opin. Ther. Pat. 2018, 28, 351–364. https://doi.org/10.1080/13543776.2018.1459569

(4) Popadyuk, I. I.; Salomatina, O. V.; Salakhutdinov, N. F., Modern approaches to modification of bile acids for the synthesis of compounds possessing valuable physico-chemical and biological properties, Russ. Chem. Rev. 2017, 86, 388–443. https://doi.org/10.1070/RCR4683

(5) Lazarević, S.; Đanić, M.; Goločorbin-Kon, S.; Al-Salami, H.; Mikov, M., Semisynthetic bile acids: a new therapeu-tic option for metabolic syndrome, Pharmacol. Res. 2019, 146, 104333–104347.


(6) Poša, M., Hydrophobicity and self-association of bile acids with a special emphasis on oxo derivatives of 5-ꞵ cholanic acid, Curr. Org. Chem. 2012, 16, 1876–1904.

(7) Goossens, J.-F.; Bailly, C., Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy, Phar-macol. Ther. 2019, 203, 107396–107409.


(8) Sharma, R.; Long, A.; Gilmer, J. F., Advances in bile acid medicinal chemistry, Curr. Med. Chem. 2011, 18, 4029–4052.

(9) Choi, Y. H.; Im, E. O.; Suh, H.; Jin, Y.; Yoo, Y. H.; Kim, N. D., Apoptosis and modulation of cell cycle con-trol by synthetic derivatives of ursodeoxycholic acid and chenodeoxycholic acid in human prostate cancer cells, Cancer Lett. 2003, 199, 157–167.


(10) Kim, N. D.; Im, E. O.; Choi, Y. H.; Yoo, Y. H., Synthet-ic bile acids: novel mediators of apoptosis, J. Biochem. Mol. Biol. 2002, 35, 134–141.

(11) Maitra, N. and U., Simple esters of cholic acid as potent organogelators: direct imaging of the collapse of SAFINs, Soft Matter 2007, 3, 1428–1433.


(12) Gauthier, M. A.; Simard, P.; Zhang, Z.; Zhu, X. X. Bile acids as constituents for dental composites: in vitro cyto-toxicity of (meth)acrylate and other ester derivatives of bile acids, J. R. Soc. Interface 2007, 4, 1145–1150. https://doi.org/10.1098/rsif.2007.1018

(13) Rolo, A. P.; Oliveira, P. J.; Moreno, A. J. M.; Palmeira, C. M. Bile Acids Affect Liver Mitochondrial Bioenerget-ics: Possible Relevance for Cholestasis Therapy, Toxico-logical Sciences 2000, 57, 177–185.

(14) Kuhajda, K.; Cvjetićanin, S. M.; Djurendić, E. A.; Sakač, M. N.; Penov-Gaši, K. M.; Kojić, V. V.; Bogdano¬vić, G. M., Synthesis and cytotoxic activity of a series of bile ac-id derivatives, Hem. Ind. 2009, 63, 313–318. https://doi.org/10.2298/HEMIND0904313K

(15) Cravotto, G.; Boffa, L.; Turello, M.; Parenti, M.; Barge, A., Chemical modifications of bile acids under high-intensity ultrasound or microwave irradiation, Steroids 2005, 70, 77–83.


(16) Hu, X.; Zhang, Z.; Zhang, X.; Li, Z.; Zhu, X. X., Selec-tive acylation of cholic acid derivatives with multiple methacrylate groups, Steroids 2005, 70, 531–537.

(17) Gauthier, M. A., Développement et charactérisation de matériaux dentaires hautement performants, PhD thesis, Universitéde Montréal, 2007.

(18) Grbović, Lj. M.; Pavlović, K. J.; Jovanović-Šanta, S. S.; Vasiljević, B. R., Microwave-assisted synthesis of bile acids derivatives: An overview, Curr. Org. Chem. 2019, 23, 256–275.


(19) Vasiljević, B.; Petri, E.; Bekić, S.; Ćelić, A. S.; Grbović, Lj.; Pavlović, K., Microwave-assisted green synthesis of bile acid derivatives and evaluation of glucocorticoid re-ceptor binding, RSC Med. Chem. 2021, 12278–287. https://doi.org/10.1039/d0md00311e

(20) Marinović, M.; Petri, E.; Grbović, Lj.; Vasiljević, B.; Jovanović-Šanta, S.; Bekić, S.; Ćelić, A., Investigation of the potential of bile acid methyl esters as inhibitors of al-do-keto reductase 1C2: Insight from molecular docking, virtual screening, experimental assays and molecular dy-namics, Mol. Inform. 2022, 41, 2100256–2100274. https://doi.org/10.1002/minf.202100256

(21) Obradović, D.; Komsta, Ł.; Agbaba, D., Novel computa-tional approaches to retention modeling in dual hydro-philic interactions/reversed phase chromatography, J. Chromatogr. A 2020, 1619, 460951–460963.


(22) Jevrić, L. R.; Karadžić, M. Ž.; Mandić, A. I.; Podunavac-Kuzmanović, S. O.; Kovačević, S. Z.; Nikolić, A. R.; Oklješa, A. M.; Sakač, M. N.; Penov-Gaši, K. M.; Stoja-nović, S. Z., Lipophilicity estimation and characterization of selected steroid derivatives of biomedical importance applying RP HPLC, J. Pharm. Biomed. Anal. 2017, 134, 27–35.


(23) Karadžić, M. Ž.; Jevrić, L. R.; Mandić, A. I.; Markov, S. L;. Podunavac-Kuzmanović, S. O.; Kovačević, S. Z.; Ni-kolić, A. R.; Oklješa, A. M.; Sakač, M. N.; Penov-Gaši, K. M., Chemometrics approach based on chromatograph-ic behavior, In silico characterization and molecular dock-ing study of steroid analogs with biomedical importance, Eur. J. Pharm. Sci. 2017, 105, 71–81. https://doi.org/10.1016/j.ejps.2017.05.004

(24) Karadžić, M. Ž.; Lončar, D. M.; Benedeković, G.; Ko-vačević, I.; Popsavin, V.; Kovačević, S. Z.; Jevrić, L. R.; Podunavac-Kuzmanović, S. O., A comparative study of chromatographic behavior and lipophilicity of selected natural styryl lactones, their derivatives and analogues, Eur. J. Pharm. Sci. 2017, 105, 99–107.


(25) Kovačević, S. Z.; Podunavac-Kuzmanović, S. O.; Jevrić, L. R.; Jovanov, P. T.; Djurendić, E. A.; Ajduković, J. J., Comprehensive QSRR modeling as a starting point in characterization and further development of anticancer drugs based on 17α-picolyl and 17(E)-picolinylidene an-drostane structures, Eur. J. Pharm. Sci. 2016, 93, 1–10. https://doi.org/10.1016/j.ejps.2016.07.008

(26) Ciura, K.; Fedorowicz, J.; Andrić, F.; Žuvela, P.; Greber, K. E.; Baranowski, P.; Kawczak, P.; Nowakowska, J.; Bączek, T.; Sączewski, J., Lipophilicity determination of antifungal isoxazolo[3,4-b]pyridin-3(1H)-ones and their N1-substituted derivatives with chromatographic and computational methods, Molecules 2019, 24, 4311–4333.


(27) Vastag, G.; Apostolov, S.; Matijević, B., Prediction of lipophilicity and pharmacokinetics of chloroacetamides by chemometric approach, Iran. J. Pharm. Res. 2018 17, 100–114.

(28) Milošević, N. P.; Stojanović, S. Z.; Penov-Gaši, K.; Perišić-Janjić, N.; Kaliszan, R., Reversed- and normal-phase liquid chromatography in quantitative structure re-tention–property relationships of newly synthesized seco-androstene derivatives, J. Pharm. Biomed. Anal. 2014, 88, 636–642.


(29) Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D., Quantitative correlation of physical and chemical proper-ties with chemical structure: utility for prediction, Chem. Rev. 2010, 110, 5714–5789.


(30) Mignani, S.; Rodrigues, J.; Tomas, H.; Jalal, R.; Singh, P. P.; Majoral, J.-P.; Vishwakarma, R. A., Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov. 2018, 23, 605–615.


(31) Cambridge Soft Corporation, Perkin Elmer Inc., Chem-BioOffice Software Version 12.0.


(32) Virtual Computational Chemistry Laboratory ALOGPS 2.1 Online Program. http://www.vcclab.org/.

(33) Chem Axon, Ltd. http://www.chemaxon.com/.

(34) Kerns, E. H.; Di, L., Drug-Like Properties: Concepts, Structure Design, and Methods: from ADME to Toxicity Optimization; Academic Press (Elsevier), Burlington, MA, USA, 2008.


Additional Files


2023-12-18 — Updated on 2023-12-24


How to Cite

Pavlović, K., Grbović, L., Karadžić Banjac, M., Kovačević, S. ., Mandić, A., Podunavac-Kuzmanović, S., & Vasiljević, B. (2023). Microwave synthesis of novel chenodeoxycholic acid esters and comparative study of chromatographic behavior and lipophilicity . Macedonian Journal of Chemistry and Chemical Engineering, 42(2), 165–174. https://doi.org/10.20450/mjcce.2023.2707 (Original work published December 18, 2023)



Organic Chemistry

Most read articles by the same author(s)