This is an outdated version published on 2024-04-18. Read the most recent version.

Comparative physicochemical investigation of the inclusion compounds of cyclodextrins with arginine and histidine stereoisomers

Authors

  • Andreea Neacsu Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest

DOI:

https://doi.org/10.20450/mjcce.2024.2757

Keywords:

cyclodextrin, histidine, arginine, inclusion complex, thermal

Abstract

The inclusion complexes of α-, β-cyclodextrin and 2-hydroxypropyl-α-cyclodextrin with two amino acid stereoisomers (L-, D-arginine and L-, D-histidine) were studied by using differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The solid inclusion compounds were prepared in a 1:1 molar ratio of the host and guest using the co-precipitation method. The pH measurements and structural visualization of complexes were carried out. The obtained results proved the formation of the complexes and revealed that the size and the symmetry of the cyclodextrin (CD) and also the structure and flexibility of the amino acid molecule had a significant influence on the complexation interaction. The correlation of the experimental data shows that βCD has a preference to form more stable complexes with levogir isomers of amino acid than αCD and 2-hydroxypropyl-α-cyclodextrin. The complexation of the amino acids isomers was accomplished by partial inclusion of the guest molecule in the CD cavity, and it was observed that CDs could better discriminate between histidine isomers than between arginine isomers.

References

(1) Szejtli, J., Past, present and futute of cyclodextrin research. Pure Appl. Chem. 2004, 10, 1825–1845.

https://doi.org/10.1351/pac200476101825

(2) Giordano, F.; Novak, C.; Moyano, J. R., Thermal analysis of cyclodextrins ant their inclusion com-pounds. Thermochim. Acta 2001, 380, 123–151.

https://doi.org/10.1016/S0040-6031(01)00665-7

(3) Crini, G., Review: A history of cyclodextrin. Chem. Rev. 2014, 114(21), 10940–10975.

https://doi.org/10.1021/cr500081p

(4) Araj, S. K.; Szeleszczuk, Ł., A review on cyclodex-trins/estrogens inclusion complexes. Int. J. Mol. Sci. 2023, 24, 8780. https://doi.org/10.3390/ijms24108780

(5) Bajorunaite, E.; Cirkovas, A.; Radzevicius, K.; Larsen, K. L.; Sereikaite, J.; Bumelis, V. A., Anti-aggregatory effect of cyclodextrins in the refolding process of re-combinant growth hormones from Escherichia coli in-clusion bodies. Int. J. Bio. Macromol. 2009, 44(5), 428–434. https://doi.org/10.1016/j.ijbiomac.2009.03.005

(6) Ghosh, S.; Ghosh, C.; Nandi, S.; Bhattacharyya, K., Unfolding and refolding of a protein by cholesterol and cyclodextrin: A single molecule study. Phys. Chem. Chem. Phys. 2015, 17, 8017–8027.

https://doi.org/10.1039/C5CP00385G

(7) Aachmann, F. L.; Otzen, D. E.; Larsen, K. L.; Wim-mer, R., Structural background of cyclodextrin-protein interactions. Protein. Eng. 2003, 16 (12), 905–912.

https://doi.org/10.1093/protein/gzg137

(8) Rospiccio, M.; Arsiccio, A.; Winter, G.; Pisano, R., The role of cyclodextrins against interface-induced denaturation in pharmaceutical formulations: A mo-lecular dynamics approach. Mol. Pharm. 2021, 18(6), 2322–2333.

https://doi.org/10.1021/acs.molpharmaceut.1c00135

(9) Gingter, S.; Bezdushna. E.; Ritter, H., Chiral recognition of macromolecules with cyclodextrins: pH- and thermo¬sensitive copolymers from N-isopropylacrylamide and N-acryloyl-D/L-phenylalanine and their inclusion complexes with cyclodextrins. Beilstein J. Org. Chem. 2011, 7, 204–209. https://doi.org/10.3762/bjoc.7.27

(10) Alexander, J.; Clark, J.; Brett, T.; Stezowski, J., Chiral discrimination in cyclodextrin complexes of amino acid derivatives: beta-cyclodextrin/N-acetyl-L-phenylalanine and N-acetyl-D-phenylalanine complexes. PNAS. 2002, 99(8), 5115–5120.

https://doi.org/10.1073/pnas.072647599

(11) Liu, Y.; Bin, L.; Han, B.; Li, Y.; Chen, R., Enantioselective recognition of amino acids by beta-cyclodextrin 6-O-monophosphates. J. Chem. Soc. Perk. 1997, 2, 1275–1278.

https://doi.org/10.1039/A700167C

(12) Liu, Y.; Zhang, Y.; Qi, A., Molecular recognition study on a supramolecular system. 10. Inclusion complexation of modified beta-cyclodextrins with amino acids: Enhanced enantioselectivity for L/D-leucine. J. Org. Chem. 1997, 62(6), 1826–1830.

https://doi.org/10.1021/jo961625b

(13) Song, L. X.; Teng, C. F.; Yang, Y., Preparation and characterization of the solid inclusion compounds of α-, β-cyclodextrin with Phenylalanine (D-, L- and DL-Phe) and tryptophan (D-, L- and DL-Trp). J. Incl. Phenom. Macrocycl. Chem. 2006, 54(3), 221–232.

https://doi.org/10.1007/s10847-005-7970-8

(14) Nagy, G.; Chouinard, C. D.; Attah, I. K.; Webb, I. K.; Garimella, S. V. B.; Ibrahim, Y. M.; Baker, E. S.; Smith R. D., Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations. Electrophor. 2018, 39(24), 3148–3155. https://doi.org/10.1002/elps.201800294

(15) Linde, G. A.; Laverde, A. Jr.; Vaz de Faria, E.; Colau-to, N. B.; De Moraes F. F.; Zanin, G., Taste modifica-tion of amino acids and protein hydrolysate by α-cyclodextrin. Food Res. Int. 2009, 42(7), 814–818.

https://doi.org/10.1016/j.foodres.2009.03.016

(16) Li J.; Wang H.; Yu D.; Zhang X. Stabilization effects of saccharides in protein formulation: A review of su-crose, trehalose, cyclodextrins and dextrans. Eur. J. Pharm. Sci. 2024, 192, 1066625.

http://doi.org/10.1016/j.ejps.2023.106625

(17) Aachmann, F.; Larsen, K.; Wimmer, R., Interactions of cyclodextrins with aromatic amino acids: A basis for protein interactions. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 349–357.

https://doi.org/10.1007/s10847-011-0071-y

(18) Cunniff, J. B.; Vouros, P., False positives and the de-tection of cyclodextrin inclusion complexes by elec-trospray mass spectrometry. J. Incl. Phenom. Macro-cycl. Chem. 1995, 6(5), 437–447.

https://doi.org/10.1016/1044-0305(95)00053-G

(19) Kundu, M.; Saha, S.; Roy, M. N., Evidences for com-plexations of β-cyclodextrin with some amino acids by 1H NMR, surface tension, volumetric investigations and XRD. J. Mol. Liq. 2017, 240, 570–577.

https://doi.org/10.1016/j.molliq.2017.05.123

(20) Neacşu, D. A.; Neacşu, A.; Contineanu, I.; Munteanu, G.; Tanasescu, S., Solid state study of the inclusion compounds of alpha-, beta-cyclodextrins with D-, L-tryptophan isomers. Rev. Rou. Chim. 2013, 58(11–12), 863–870.

https://revroum.lew.ro/wp-content/uploads/2013/11/Art% 2003.pdf

(21) Ekka, D.; Roy, M. N., Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems. Amino Acids. 2013, 45(4), 755–777.

https://doi.org/10.1007/s00726-013-1519-8

(22) Roy, M.; Roy, A.; Saha, S., Probing inclusion complexes of cyclodextrins with amino acids by physicochemical approach. Carbohyd. Polym. 2016, 151, 458–466.

https://doi.org/10.1016/j.carbpol.2016.05.100

(23) Roy, M.; Ekka, D.; Saha, S.; Roy, M., Host-guest inclusion complexes of alpha and beta-cyclodextrins with alpha-amino acids. RSC Advances. 2014, 4, 42383–42390. https://doi.org/10.1039/C4RA07877B

(24) Wu, G; Meininger, C. J.; McNeal, C.; Bazer, F. W.; Rhoads, J. M., Role of L-arginine in nitric oxide syn-thesis and health in humans. Adv. Exp. Med. Biol. 2021, 1332, 167–187.

https://doi.org/10.1007/978-3-030-74180-8_10

(25) Baynes, B. M.; Wang, D. I.; Trout, B. L., Role of argi-nine in the stabilization of proteins against aggregation. Biochemistry. 2005, 44(12), 4919–4925.

https://doi.org/10.1021/bi047528r

(26) Arakawa, T.; Ejima, D.; Tsumoto, K.; Obeyama, N.; Tanaka, Y.; Kita, Y.; Timasheff, S. N., Suppression of protein interactions by arginine: a proposed mecha-nism of the arginine effects. Biophys Chem. 2007, 127(1–2), 1–8. https://doi.org/10.1016/j.bpc.2006.12.007

(27) Liao, S. M.; Du, Q. S.; Meng, J. Z.; Pang, Z. W.; Huang, R. B., The multiple roles of histidine in protein interactions. Chem. Cent. J. 2013, 7(1), 44.

https://doi.org/10.1186/1752-153X-7-44

(28) Holeček, M., Histidine in health and disease: metabo-lism, physiological importance, and use as a supple-ment. Nutrients 2020, 12(3), 848.

https://doi.org/10.3390/nu12030848

(29) Saha, S.; Ray, T.; Basak, S.; Roy, N. M., NMR, sur-face tension and conductivity studies to determine the inclusion mechanism: thermodynamics of host–guest inclusion complexes of natural amino acids in aque-ous cyclodextrins. New J. Chem. 2015, 40, 651–661.

https://doi.org/10.1039/C5NJ02179K

(30) Esmaeilpour D.; Shityakov S.; Tamaddon, A. M.; Bordbar, A. K., Comparative chemical examination of inclusion complexes formed with β-cyclodextrin de-rivatives and basic amino acids. Carbohydr Polym. 2021, 262, 117868.

https://doi.org/10.1016/j.carbpol.2021.117868

(31) Benjamas, C.; Jaruporn, R., Inclusion complex for-mation of cyclodextrin with its guest and their applica-tions. Biol. Eng. Med. 2016, 2(1), 1–6.

https://doi.org/10.15761/BEM.1000108

(32) Lahiani-Skiba, M.; Boulet, Y.; Youm, I.; Bounoure F,; Verite P.; Arnaud, P.; Skiba, M. Interaction between hydrophilic drug and α-cyclodextrins: physico-chemical aspects. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 211–217. https://doi.org/10.1007/s10847-006-9194-y

(33) Shalaby, K. S.; Ismail, M. I.; Lamprecht, A., Cy-clodextrin complex formation with water-soluble drugs: conclusions from isothermal titration calorime-try and molecular modeling. AAPS Pharm. Sci. Tech. 2021, 22(7), 232. https://doi.org/10.1208/s12249-021-02040-8

(34) Choi, K. E.; Chae, E.; Balupuri, A.; Yoon, H. R.; Kang, N. S., Topological water network analysis around amino acids. Molecules 2019, 24(14), 2653.

https://doi.org/10.3390/molecules24142653

(35) Monera, O. D.; Sereda, T. J.; Zhou, N. E.; Kay, C. M.; Hodges, R. S., Relationship of sidechain hydrophobi-city and alpha-helical propensity on the stability of the single-stranded amphipathic alpha-helix. J. Pept. Sci. 1995, 1(5), 319–329. https://doi.org/10.1002/psc.310010507

(36) Mohamed Ameen, H.; Kunsági-Máté, S.; Bognár, B.; Szente, L.; Poór, M.; Lemli, B., Thermodynamic char-acterization of the interaction between the antimicro-bial drug sulfamethazine and two selected cyclodex-trins. Molecules. 2019, 24(24), 4565.

https://doi.org/10.3390/molecules24244565

(37) Sgarlata, C.; Mugridge, J. S.; Pluth, M. D.; Zito, V.; Arena, G.; Raymond, K. N., Different and often op-posing forces drive the encapsulation and multiple ex-terior binding of charged guests to a M4 L6 supramo-lecular vessel in water. Chemistry 2017, 23(66), 16813–16818. https://doi.org/10.1002/chem.201703202

(38) Loftsson, T.; Sigurdsson, H. H.; Jansook, P., Anoma-lous properties of cyclodextrins and their complexes in aqueous solutions. Materials (Basel) 2023, 16(6), 2223. https://doi.org/10.3390/ma16062223

(39) D’Aria, F.; Pagano, B.; Giancola, C., Thermodynamic properties of hydroxypropyl-β-cyclodextrin/guest in-teraction: a survey of recent studies. J. Therm. Anal. Calorim. 2022, 47, 4889–4897.

https://doi.org/10.1007/s10973-021-10958-1

(40) George, S. J.; Vasudevan, D. T., Studies on the prepa-ration, characterization, and solubility of 2-HP-β-cyclodextrin-meclizine HCl inclusion complexes. J. Young Pharm. 2012, 4(4), 220–227.

https://doi.org/10.4103/0975-1483.104365

(41) Menezes, P. P.; Serafini, M. R.; Quintans-Junior, L. J.; Silva, G. F.; Oliveira, J. F.; Carvalho, F. M. S.; Souza, J. C. C.; Matos, J. R.; Alves, P. B.; Matos, I. L.; Hada-ruga, D. I.; Araujo, A. A. S., Inclusion complex of (2)-linalool and b-cyclodextrin. J. Therm. Anal. Calorim. 2014, 115(3), 2429–2437.

https://doi.org/10.1007/s10973-013-3367-x

(42) Teixeira, L. R.; Sinisterra, R. D.; Vieira R. P.; Scar-latelli-Lima, A.; Moraes, M. F. D.; Doretto, M. C.; De-nadai, A. M.; Beraldo, H., An inclusion compound of the anticonvulsant sodium valproate into a-cyclodextrin: physico-chemical characterization. J. Incl. Phenom. Macrocyclic Chem. 2006, 54(1), 133–138.

https://doi.org/10.1007/s10847-005-5817-y

(43) Song, L. X.; Teng, C. F.; Xu, P.; Wang, H. M.; Zhang, Z. Q.; Liu, Q. Q., Thermal decomposition behaviors of b-cyclodextrin, its inclusion complexes of alkyl amines, and complexed b-cyclodextrin at different heating rates. J. Incl. Phenom. Macrocycl. Chem. 2008, 60(3), 223–233. https://doi.org/10.1007/s10847-007-9369-1

(44) Hou, Y.; Li, S.; Sun, T.; Yang, J.; Xing, P.; Liu, W.; Hao, A., Organogels based on b-cyclodextrin system with molecular recognition property. J. Incl. Phenom. Macrocycl. Chem. 2014, 80(3), 217–224.

https://doi.org/10.1007/s10847-013-0379-x

(45) Rocha, B. A.; Rodrigues, M. R.; Bueno, P. C. P.; de Mello Costa-Machado, A. R.; De Oliveira Lima Leite Vaz, M. M.; Nascimento, A. P.; Barud, H. S.; Berretta-Silva, A. A., Preparation and thermal characterization of inclusion complex of Brazilian green propolis and hydroxypropyl-b-cyclodextrin. J. Therm. Anal. Calo-rim. 2012, 108(1), 87–94.

https://doi.org/10.1007/s10973-011-1713-4

(46) Orgoványi, J.; Oláh, E.; H-Otta, K.; Fenyvesi, E. Dis-solution properties of cypermethrin/cyclodextrin com-plexes. J Incl. Phenom. Macrocycl. Chem. 2009, 63(1), 53–59. https://doi.org/10.1007/s10847-008-9488-3

(47) Lakkakula, J.; Krause R. W. M.; Ndinteh, T. D.; Vi-jaylakshmi, S. P.; Raichur, M. A., Detailed investiga-tion of a γ-cyclodextrin inclusion complex with L-thyroxine for improved pharmaceutical formulations. J. Incl. Phenom. Macrocycl. Chem. 2012, 74(1), 397–405.

https://doi.org/10.1007/s10847-012-0133-9

(48) Nicolescu, C.; Arama, C.; Monciu, C. M., Preparation and characterization of inclusion complexes between repaglidine and β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and randomyl methtlated β-cyclodextrin. Farmacia 2010, 58(1), 78–88.

https://farmaciajournal.com/arhiva/20101/issue12010art09.pdf

(49) Sbora, R.; Budura, E. A.; Nitulescu, G. M.; Balaci, T.; Lupuleasa, D., Preparation and characterization of inclusion complexes formed by avobenzone with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and hydroxypropyl-α-cyclodextrin. Farmacia 2015, 63(4), 548–555.

https://farmaciajournal.com/wp-content/uploads/2015-04-art-13-Sbora_Budura_548-555.pdf

(50) Ikuta, N.; Tanaka, A.; Otsubo, A.; Ogawa, N.; Yama-moto, H.; Mizukami, T.; Arai, S.; Okuno, M.; Terao, K.; Matsugo, S., Spectroscopic studies of R(+)-α-lipoic acid–cyclodextrin complexes. Int. J. Mol. Sci. 2014, 15(11), 20469–20485.

https://doi.org/10.3390/ijms151120469

(51) Menahem, T.; Mastai, Y., Chiral soluble polymers and microspheres for enantioselective crystallization. J. Polym. Sci. A Polym. Chem. 2006, 44(9), 3009–3017.

https://doi.org/10.1002/pola.21376

(52) Lakio, S.; Morton, D. A. V.; Ralph, A. P.; Lambert, P., Optimizing aerosolization of a high-dose L-arginine powder for pulmonary delivery. Asian J. Pharm. Sci. 2015, 10(6), 528–540.

https://doi.org/10.1016/j.ajps.2015.08.001

(53) Mohit, V.; Harshal, G.; Neha, D.; Vilasrao, K.; Ra-jashree, H., A comparative study of complexation methods for cefdinir-hydroxypropyl-β-cyclodextrin system. J. Incl. Phenom. Macrocycl. Chem. 2011, 71(1), 57–66. https://doi.org/10.1007/s10847-010-9901-6

(54) Serafini, M. R.; Menezes, P. P.; Costa, L. P.; Lima, C. M.; Quintans Jr., L. J.; Cardoso, J. C.; Matos, J. R.; Soares-Sobrinho, J. L.; Grangeiro Jr., S.; Nunes, P. S.; Bonjadim, L. R.; Araújo, A. A. S., Interaction of p-cymene with b-cyclodextrin. J. Therm. Anal. Calorim. 2012, 109(2), 951–955.

https://doi.org/10.1007/s10973-011-1736-x

(55) Li, S.; Yue, J.; Zhou, W.; Li, L. An investigation into the preparation, characterization and antioxidant activ-ity of puerarin/cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 2015, 82(3), 453–460.

https://doi.org/10.1007/s10847-015-0516-9

Downloads

Published

2024-04-18

Versions

How to Cite

Neacsu, A. (2024). Comparative physicochemical investigation of the inclusion compounds of cyclodextrins with arginine and histidine stereoisomers. Macedonian Journal of Chemistry and Chemical Engineering, 43(1). https://doi.org/10.20450/mjcce.2024.2757

Issue

Section

Physical Chemistry