This is an outdated version published on 2024-04-18. Read the most recent version.

Ab initio exploration of modified carbon nanotubes as potential corrosion inhibitors

Authors

  • Avni Berisha University of Prishtina, Prishtina https://orcid.org/0000-0002-3876-1345
  • Rajesh Hadhlar School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
  • Omar Dagdag Department of Mechanical Engineering, Gachon University, Seongnam 13120

DOI:

https://doi.org/10.20450/mjcce.2024.2806

Keywords:

SWCNT, grafting, diazonium salts, corrosion inhibition, copper, DFT, MC, MD

Abstract

In order to develop novel unexplored potential corrosion inhibitors, covalently modified single-walled carbon nanotubes (SWCNT) via benzoic (–PhCOOH) and aniline (–PhNH2) groups are being investigated as corrosion inhibitors for the first time. Utilizing a comprehensive approach, this study employed density functional theory (DFT), Monte Carlo (MC), and molecular dynamics simulations (MD) to assess the adsorption behavior of modified nanotubes as corrosion inhibitors on the Cu(111) surface within a simulated aqueous HCl corrosion medium. The results provided molecular information on the adsorption capability, geometry adsorption centers, and adsorption energies (Eads) of carbon nanotubes on the surface of Cu(111). The adsorption energy values unveiled robust interactions between SWCNT–PhCOOH and SWCNT–PhNH2 inhibitors and the Cu(111) surface, suggesting a highly effective corrosion protection mechanism. The calculated Eads values exhibited notable ranges, spanning from –260.82 to –308.18 kcal/mol for SWCNT–PhCOOH and –220.92 to –261.01 kcal/mol for SWCNT–PhNH2 with the maximum probability values, representing the most favorable adsorption scenarios, determined to be –292.96 and –229.39 kcal/mol, respectively. A key insight from Monte Carlo simulations underscored the inherent spontaneity of the adsorption process, corroborated by the consistently negative Eads values. These findings collectively underscore the substantial affinity of the inhibitors to the copper surface, contributing to a deeper comprehension of their corrosion inhibition capabilities.

References

(1) Chaubey, N.; Savita; Qurashi, A.; Chauhan, D. S.; Quraishi, M. A., Frontiers and Advances in Green and Sustainable Inhibitors for Corrosion Applications: A Critical Review. J. Mol. Liq. 2020, 114385.

https://doi.org/10.1016/j.molliq.2020.114385

(2) Raja, P. B.; Ismail, M.; Ghoreishiamiri, S.; Mirza, J.; Ismail, M. C.; Kakooei, S.; Rahim, A. A., Reviews on Corrosion Inhibitors: A Short View. Chemical Engineering Communications. Taylor and Francis Ltd., September 1, 2016, 1145–1156.

https://doi.org/10.1080/00986445.2016.1172485

(3) Gece, G., Drugs: A Review of Promising Novel Corrosion Inhibitors. Corrosion Science. Pergamon, December 1, 2011, 3873–3898.

https://doi.org/10.1016/j.corsci.2011.08.006

(4) Tang, Z., A Review of Corrosion Inhibitors for Rust Preventative Fluids. Current Opinion in Solid State and Materials Science. Elsevier Ltd, August 1, 2019, 100759. https://doi.org/10.1016/j.cossms.2019.06.003

(5) Verma, C.; Ebenso, E. E.; Bahadur, I.; Quraishi, M. A., An Overview on Plant Extracts as Environmental Sustainable and Green Corrosion Inhibitors for Metals and Alloys in Aggressive Corrosive Media. Journal of Molecular Liquids. Elsevier B. V., September 15, 2018, pp 577–590.

https://doi.org/10.1016/j.molliq.2018.06.110

(6) Verma, C.; Olasunkanmi, L. O.; Akpan, E. D.; Quraishi, M. A.; Dagdag, O.; El Gouri, M.; Sherif, E. S. M.; Ebenso, E. E., Epoxy Resins as Anticorrosive Polymeric Materials: A Review; 2020; Vol. 156, 104741

(7) Fathima Sabirneeza, A. A.; Geethanjali, R.; Subhashini, S., Polymeric Corrosion Inhibitors for Iron and Its Alloys: A Review. Chemical Engineering Communications. Taylor and Francis Ltd. February 1, 2015, 232–244.

https://doi.org/10.1080/00986445.2014.934448

(8) Hooshmand Zaferani, S.; Sharifi, M.; Zaarei, D.; Shishesaz, M. R., Application of Eco-Friendly Products as Corrosion Inhibitors for Metals in Acid Pickling Processes – A Review. Journal of Environmental Chemical Engineering. Elsevier, December 1, 2013, 652–657. https://doi.org/10.1016/j.jece.2013.09.019

(9) Finšgar, M.; Jackson, J., Application of Corrosion Inhibitors for Steels in Acidic Media for the Oil and Gas Industry: A Review. Corros. Sci. 2014, 86, 17–41. https://doi.org/10.1016/j.corsci.2014.04.044

(10) Fateh, A.; Aliofkhazraei, M.; Rezvanian, A. R., Review of Corrosive Environments for Copper and Its Corrosion Inhibitors. Arab. J. Chem. 2020, 13 (1), 481–544.

https://doi.org/10.1016/J.ARABJC.2017.05.021

(11) Kokalj, A.; Kovačević, N.; Peljhan, S.; Finšgar, M.; Lesar, A.; Milošev, I., Triazole, Benzotriazole, and Naphthotriazole as Copper Corrosion Inhibitors: I. Molecular Electronic and Adsorption Properties. ChemPhysChem 2011, 12 (18), 3547–3555.

https://doi.org/10.1002/CPHC.201100537

(12) Khan, P.; Shanthi, V.; Babu, R.; S. M.-J. of; 2015, undefined. Effect of Benzotriazole on Corrosion Inhibition of Copper under Flow Conditions. Elsevier.

(13) Sun, S.; Geng, Y.; Tian, L.; Chen, S.; Yan, Y.; Hu, S., Density Functional Theory Study of Imidazole, Benzimidazole and 2-Mercaptobenzimidazole Adsorption onto Clean Cu(1 1 1) Surface. Corros. Sci. 2012, 63, 140–147.

https://doi.org/10.1016/J.CORSCI.2012.05.024

(14) Lee, W. J., Inhibiting Effects of Imidazole on Copper Corrosion in 1 M HNO3 Solution. Mater. Sci. Eng. A 2003, 348 (1–2), 217–226.

https://doi.org/10.1016/S0921-5093(02)00734-7

(15) Finšgar, M., 2-Mercaptobenzimidazole as a Copper Corrosion Inhibitor: Part I. Long-Term Immersion, 3D-Profilometry, and Electrochemistry. Corros. Sci. 2013, 72, 82–89.

https://doi.org/10.1016/J.CORSCI.2013.03.011

(16) Kılınççeker, G.; Baş, M.; Zarifi, F.; Sayın, K., Experimental and Computational Investigation for (E)-2-Hydroxy-5-(2-Benzylidene) Aminobenzoic Acid Schiff Base as a Corrosion Inhibitor for Copper in Acidic Media. Iran. J. Sci. Technol. Trans. A Sci. 2020, 45 (2), 515–527.

https://doi.org/10.1007/S40995-020-01015-X

(17) Kuruvilla, M.; Prasad, A. R.; Shainy, K. M.; Joseph, A., Protection of Metallic Copper from the Attack of Sulphuric Acid Using HDMMA, a Schiff Base Derived from l-Cysteine and 2-Hydroxy-1-Naphthaldehyde. J. Bio- Tribo-Corrosion 2018, 5 (1), 1–11. https://doi.org/10.1007/S40735-018-0199-Z

(18) Dahmani, K.; Galai, M.; Ouakki, M.; Cherkaoui, M.; Touir, R.; Erkan, S.; Kaya, S.; El Ibrahimi, B., Quantum Chemical and Molecular Dynamic Simulation Studies for the Identification of the Extracted Cinnamon Essential Oil Constituent Responsible for Copper Corrosion Inhibition in Acidified 3.0 Wt% NaCl Medium. Inorg. Chem. Commun. 2021, 124, 108409. https://doi.org/10.1016/J.INOCHE.2020.108409

(19) Li, H.; Zhang, S.; Qiang, Y., Corrosion Retardation Effect of a Green Cauliflower Extract on Copper in H2SO4 Solution: Electrochemical and Theoretical Explorations. J. Mol. Liq. 2021, 321, 114450.

https://doi.org/10.1016/J.MOLLIQ.2020.114450

(20) Dhouibi, I.; Masmoudi, F.; Bouaziz, M.; Masmoudi, M., A Study of the Anti-Corrosive Effects of Essential Oils of Rosemary and Myrtle for Copper Corrosion in Chloride Media. Arab. J. Chem. 2021, 14 (2), 102961. https://doi.org/10.1016/J.ARABJC.2020.102961

(21) Feng, L.; Zhang, S.; Lu, Y.; Tan, B.; Chen, S.; Guo, L., Synergistic Corrosion Inhibition Effect of Thiazolyl-Based Ionic Liquids between Anions and Cations for Copper in HCl Solution. Appl. Surf. Sci. 2019, 483, 901–911. https://doi.org/10.1016/J.APSUSC.2019.03.299

(22) Shi, Y.; Fu, Y.; Xu, S.; Huang, H.; Zhang, S.; Wang, Z.; Li, W.; Li, H.; Gao, F. Strengthened Adsorption and Corrosion Inhibition of New Single Imidazole-Type Ionic Liquid Molecules to Copper Surface in Sulfuric Acid Solution by Molecular Aggregation. J. Mol. Liq. 2021, 338, 116675.

https://doi.org/10.1016/J.MOLLIQ.2021.116675

(23) Cui, G.; Bi, Z.; Wang, S.; Liu, J.; Xing, X.; Li, Z.; Wang, B., A Comprehensive Review on Smart Anti-Corrosive Coatings. Prog. Org. Coatings 2020, 148, 105821. https://doi.org/10.1016/J.PORGCOAT.2020.105821

(24) Lu, Y.; Zhou, L.; Tan, B.; Xiang, B.; Zhang, S.; Wei, S.; Wang, B.; Yao, Q., Two Common Antihistamine Drugs as High-Efficiency Corrosion Inhibitors for Copper in 0.5M H2SO4. J. Taiwan Inst. Chem. Eng. 2021, 123, 11–20. https://doi.org/10.1016/J.JTICE.2021.05.027

(25) Kamel, M. M.; Mohsen, Q.; Anwar, Z. M.; Sherif, M. A., An Expired Ceftazidime Antibiotic as an Inhibitor for Disintegration of Copper Metal in Pickling HCl Media. J. Mater. Res. Technol. 2021, 11, 875–886. https://doi.org/10.1016/J.JMRT.2021.01.055

(26) Tanwer, S.; Shukla, S. K., Recent Advances in the Applicability of Drugs as Corrosion Inhibitor on Metal Surface: A Review. Curr. Res. Green Sustain. Chem. 2022, 5, 100227.

https://doi.org/10.1016/J.CRGSC.2021.100227

(27) Lee, J.; Kuchibhotla, A.; Banerjee, D.; Berman, D., Silica Nanoparticles as Copper Corrosion Inhibitors. Mater. Res. Express 2019, 6 (8), 0850e3.

https://doi.org/10.1088/2053-1591/AB2270

(28) Hannula, P. M.; Masquelier, N.; Lassila, S.; Aromaa, J.; Janas, D.; Forsén, O.; Lundström, M., Corrosion Behaviour of Cast and Deformed Copper-Carbon Nanotube Composite Wires in Chloride Media. J. Alloys Compd. 2018, 746, 218–226.

https://doi.org/10.1016/J.JALLCOM.2018.02.289

(29) Baghalha, M.; Kamal-Ahmadi, M., Copper Corrosion in Sodium Dodecyl Sulphate Solutions and Carbon Nanotube Nanofluids: A Modified Koutecky–Levich Equation to Model the Agitation Effect. Corros. Sci. 2011, 53 (12), 4241–4247.

https://doi.org/10.1016/J.CORSCI.2011.08.035

(30) Berisha, A.; Seydou, M., Grafting of Aryl Radicals onto Surfaces — A DFT Study. Aryl Diazonium Salts and Related Compounds: Surface Chemistry and Applications; Chehimi, M. M., Pinson, J., Mousli, F., Eds. Springer International Publishing: Cham, 2022; pp 121–135. https://doi.org/10.1007/978-3-031-04398-7_6

(31) Berisha, A.; Combellas, C.; Kanoufi, F.; Pinson, J.; Podvorica, F. I., Physisorption vs Grafting of Aryldiazonium Salts onto Iron: A Corrosion Study. Electrochim. Acta 2011, 56 (28), 10762–10766.

https://doi.org/10.1016/j.electacta.2011.01.049

(32) Chira, A.; Bucur, B.; Radu, G. L., Investigation of the Corrosion Inhibition Properties of New Phenyl Aldehyde Organic Layers Functionalized with Different Amino Alcohols Electrodeposited on Copper. Comptes Rendus Chim. 2021, 24 (1), 21–31.

https://doi.org/10.5802/CRCHIM.59/

(33) Pinson, J.; Podvorica, F., Attachment of Organic Layers to Conductive or Semiconductive Surfaces by Reduction of Diazonium Salts. Chem. Soc. Rev. 2005, 34 (5), 429–439. https://doi.org/10.1039/b406228k

(34) Chaussé, A.; Chehimi, M. M.; Karsi, N.; Pinson, J.; Podvorica, F.; Vautrin-Ul, C., The Electrochemical Reduction of Diazonium Salts on Iron Electrodes. The Formation of Covalently Bonded Organic Layers and Their Effect on Corrosion. Chem. Mater. 2002, 14 (1), 392–400. https://doi.org/10.1021/cm011212d

(35) Shams Ghahfarokhi, Z.; Bagherzadeh, M.; Ghiamati Yazdi, E.; Teimouri, A., Surface Modification of Graphene-Coated Carbon Steel Using Aromatic Molecules for Enhancing Corrosion Resistance; Comparison between Type of Aryl Substitution with Different Spatial Situations. Anti-Corrosion Methods Mater. 2018, 65 (3), 249–262.

https://doi.org/10.1108/ACMM-06-2017-1808/FULL/XML

(36) Berisha, A.; Chehimi, M. M.; Pinson, J.; Podvorica, F. I., Electrode Surface Modification Using Diazonium Salts. In Electroanalytical Chemistry. A Series of Advances; CRC Press, 2015; pp. 115–224. https://doi.org/doi:10.1201/b19196-4

(37) El Faydy, M.; Benhiba, F.; Berisha, A.; Kerroum, Y.; Jama, C.; Lakhrissi, B.; Guenbour, A.; Warad, I.; Zarrouk, A., An Experimental-Coupled Empirical Investigation on the Corrosion Inhibitory Action of 7-Alkyl-8-Hydroxyquinolines on C35E Steel in HCl Electrolyte. J. Mol. Liq. 2020, 317.

https://doi.org/10.1016/j.molliq.2020.113973

(38) Hsissou, R.; Abbout, S.; Seghiri, R.; Rehioui, M.; Berisha, A.; Erramli, H.; Assouag, M.; Elharfi, A., Evaluation of Corrosion Inhibition Performance of Phosphorus Polymer for Carbon Steel in [1 M] HCl: Computational Studies (DFT, MC and MD simulations). J. Mater. Res. Technol. 2020, 9 (3), 2691–2703.

(39) El-Aouni, N.; Dagdag, O.; El Amri, A.; Kim, H.; Haldhar, R.; Kim, S. C.; Dkhireche, N.; El Bachiri, A.; Berisha, A.; Rafik, M., Synthesis, Structural Characterization and Anticorrosion Properties of a New Hexafunctional Epoxy Prepolymer Based on Urea and Phosphorus Trichloride for E24 Carbon Steel in 1.0 M HCl. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 682, 132963.

https://doi.org/10.1016/J.COLSURFA.2023.132963

(40) Dagdag, O.; Berisha, A.; Safi, Z.; Hamed, O.; Jodeh, S.; Verma, C.; Ebenso, E. E. E.; El Harfi, A., DGEBA-Polyaminoamide as Effective Anti-Corrosive Material for 15CDV6 Steel in NaCl Medium: Computational and Experimental Studies. J. Appl. Polym. Sci. 2020, 137 (8), 48402. https://doi.org/10.1002/app.48402

(41) Berisha, A.; Krasniqi, E.; Halili, J.; Jusufi, K.; Reka, A.; Mehmeti, V.; Halili, A.; Dagdag, O., Going Green: Stachys Scardica H. Leaves Extract Derived from Supercritical CO2 Extraction as an Effective Corrosion Inhibitor for Mild Steel in 1 M HCl Media. Chem. Pap. 2023, 1–16.

https://doi.org/10.1007/S11696-023-02959-1/METRICS

(42) Rbaa, M.; Dohare, P.; Berisha, A.; Dagdag, O.; Lakhrissi, L.; Galai, M.; Lakhrissi, B.; Touhami, M. E.; Warad, I.; Zarrouk, A., New Epoxy Sugar Based Glucose Derivatives as Eco Friendly Corrosion Inhibitors for the Carbon Steel in 1.0 M HCl: Experimental and Theoretical Investigations. J. Alloys Compd. 2020, 833, 154949.

https://doi.org/10.1016/j.jallcom.2020.154949

(43) Berisha, A., Ab Inito Exploration of Nanocars as Potential Corrosion Inhibitors. Comput. Theor. Chem. 2021, 1201, 113258.

(44) El-Aouni, N.; Hsissou, R.; Safi, Z.; Abbout, S.; Benhiba, F.; El Azzaoui, J.; Haldhar, R.; Wazzan, N.; Guo, L.; Erramli, H.; Elharfi, A.; El Bachiri, A.; Rafik, M., Performance of Two New Epoxy Resins as Potential Corrosion Inhibitors for Carbon Steel in 1M HCl Medium: Combining Experimental and Computational Approaches. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 626, 127066.

https://doi.org/10.1016/J.COLSURFA.2021.127066

(45) Hsissou, R.; Benhiba, F.; Echihi, S.; Benzidia, B.; Cherrouf, S.; Haldhar, R.; Ahmad Alvi, P.; Kaya, S.; Serdaroğlu, G.; Zarrouk, A., Performance of Curing Epoxy Resin as Potential Anticorrosive Coating for Carbon Steel in 3.5% NaCl Medium: Combining Experimental and Computational Approaches. Chem. Phys. Lett. 2021, 783, 139081.

https://doi.org/10.1016/J.CPLETT.2021.139081

(46) Abbout, S.; Hsissou, R.; Erramli, H.; Chabebe, D.; Salim, R.; Kaya, S.; Hajjaji, N., Gravimetric, Electrochemical and Theoretical Study, and Surface Analysis of Novel Epoxy Resin as Corrosion Inhibitor of Carbon Steel in 0.5 M H2SO4 Solution. J. Mol. Struct. 2021, 1245, 131014.

https://doi.org/10.1016/J.MOLSTRUC.2021.131014

(47) Hsissou, R.; Azogagh, M.; Benhiba, F.; Echihi, S.; Galai, M.; Shaim, A.; Bahaj, H.; Briche, S.; Kaya, S.; Serdaroğlu, G.; Zarrouk, A.; Ebn Touhami, M.; Rafik, M., Insight of Development of Two Cured Epoxy Polymer Composite Coatings as Highly Protective Efficiency for Carbon Steel in Sodium Chloride Solution: DFT, RDF, FFV and MD Approaches. J. Mol. Liq. 2022, 360, 119406.

https://doi.org/10.1016/J.MOLLIQ.2022.119406

(48) Hsissou, R.; Benhiba, F.; Abbout, S.; Dagdag, O.; Benkhaya, S.; Berisha, A.; Erramli, H.; Elharfi, A., Trifunctional Epoxy Polymer as Corrosion Inhibition Material for Carbon Steel in 1.0 M HCl: MD Simulations, DFT and Complexation Computations. Inorg. Chem. Commun. 2020, 115, 107858.

https://doi.org/10.1016/J.INOCHE.2020.107858

(49) Jafari, H.; Ameri, E.; Hassan Vakili, M.; Berisha, A., Effect of OH Position on Adsorption Behavior of Schiff-Base Derivatives in Corrosion Inhibition of Carbon Steel in 1 M HCl. Electrochem. Commun. 2024, 159, 107653. https://doi.org/10.1016/J.ELECOM.2023.107653

(50) El Arrouji, S.; Karrouchi, K.; Berisha, A.; Ismaily Alaoui, K.; Warad, I.; Rais, Z.; Radi, S.; Taleb, M.; Ansar, M.; Zarrouk, A., New Pyrazole Derivatives as Effective Corrosion Inhibitors on Steel-Electrolyte Interface in 1 M HCl: Electrochemical, Surface Morphological (SEM) and Computational Analysis. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 604, 125325. https://doi.org/10.1016/j.colsurfa.2020.125325

(51) Berisha, A.; Podvorica, F. I.; Mehmeti, V.; Syla, F.; Vataj, D., Theoretical and Experimental Studies of the Corrosion Behavior of Some Thiazole Derivatives toward Mild Steel in Sulfuric Acid Media. Maced. J. Chem. Chem. Eng. 2015, 34 (2), 287–294.

https://doi.org/10.20450/mjcce.2015.576

(52) Cai, G.; Hou, J.; Jiang, D.; Dong, Z., Polydopamine-Wrapped Carbon Nanotubes to Improve the Corrosion Barrier of Polyurethane Coating. RSC Adv. 2018, 8 (42), 23727–23741. https://doi.org/10.1039/C8RA03267J

(53) Pruna, A., Advances in Carbon Nanotube Technology for Corrosion Applications. Handb. Polym. Nanocomposites. Process. Perform. Appl. Vol. B Carbon Nanotub. Based Polym. Compos. 2015, 335–360. https://doi.org/10.1007/978-3-642-45229-1_36/COVER/.

(54) Kim, S. J.; Kim, Y. I.; Lamichhane, B.; Kim, Y. H.; Lee, Y.; Cho, C. R.; Cheon, M.; Kim, J. C.; Jeong, H. Y.; Ha, T.; Kim, J.; Lee, Y. H.; Kim, S. G.; Kim, Y. M.; Jeong, S. Y., Flat-Surface-Assisted and Self-Regulated Oxidation Resistance of Cu(111). Nat. 2022, 603 (7901), 434–438.

https://doi.org/10.1038/s41586-021-04375-5

(55) Berisha, A., An Experimental and Theoretical Investigation of the Efficacy of Pantoprazole as a Corrosion Inhibitor for Mild Steel in an Acidic Medium. Electrochem, 2022, 3 (1), 28–41.

https://doi.org/10.3390/ELECTROCHEM3010002

(56) Thaçi, V.; Hoti, R.; Berisha, A.; Bogdanov, J., Corrosion Study of Copper in Aqueous Sulfuric Acid Solution in the Presence of (2E,5E)-2,5-Dibenzylidenecyclopentanone and (2E,5E)-Bis[(4-Dimethylamino)Benzylidene]Cyclopentanone: Experimental and Theoretical Study. Open Chem. 2020, 18 (1), 1412–1420.

https://doi.org/10.1515/chem-2020-0172

(57) Aradi, B.; Hourahine, B.; Frauenheim, T., DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method. J. Phys. Chem. A 2007, 111 (26), 5678–5684. https://doi.org/10.1021/JP070186P

(58) Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M. Y.; Dumitric, T.; Dominguez, A.; Ehlert, S.; Elstner, M.; Van Der Heide, T.; Hermann, J.; Irle, S.; Kranz, J. J.; Köhler, C.; Kowalczyk, T.; Kubař, T.; Lee, I. S.; Lutsker, V.; Maurer, R. J.; Min, S. K.; Mitchell, I.; Negre, C.; Niehaus, T. A.; Niklasson, A. M. N.; Page, A. J.; Pecchia, A.; Penazzi, G.; Persson, M. P.; Å&tild;ezáč, J.; Sánchez, C. G.; Sternberg, M.; Stöhr, M.; Stuckenberg, F.; Tkatchenko, A.; Yu, V. W. Z.; Frauenheim, T. DFTB+, a Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations. J. Chem. Phys. 2020, 152 (12), 124101. https://doi.org/10.1063/1.5143190

(59) Mehmeti, V.; Podvorica, F., Modification of Cu(111) Surface with Alkylphosphonic Acids in Aqueous and Ethanol Solution – An Experimental and Theoretical Study. Electrochem. 2022, 3 (1), 58–69.

https://doi.org/10.3390/ELECTROCHEM3010004

(60) Berisha, A.; Podvorica, F. I.; Vataj, R., Corrosion Inhibition Study of Mild Steel in an Aqueous Hydrochloric Acid Solution Using Brilliant Cresyl Blue – a Combined Experimental and Monte Carlo Study. Port. Electrochim. Acta 2021, 39 (6), 393–401.

https://doi.org/10.4152/pea.2021390601

(61) El-Aouni, N.; Dagdag, O.; El Amri, A.; Berradi, M.; Kim, H.; Elbachiri, A.; Berdimurodov, E.; Berisha, A.; Rafik, M.; Aliev, N., Experimental and Computational Insights into Destruction Protection of E24 Carbon Metal by New Trifunctional Sulfur-Phosphorus Epoxy Polymer. J. Taiwan Inst. Chem. Eng. 2024, 155, 105281. https://doi.org/10.1016/J.JTICE.2023.105281

(62) Berisha, A., Experimental, Monte Carlo and Molecular Dynamic Study on Corrosion Inhibition of Mild Steel by Pyridine Derivatives in Aqueous Perchloric Acid. Electrochem 2020, 1 (2), 188–199.

https://doi.org/10.3390/electrochem1020013

(63) Kaya, S.; Siddique, F.; Isin, D. O.; Katin, K. P.; Asati, V.; Berisha, A., Inhibition Performances of New Pyrazole Derivatives against the Corrosion of C38 Steel in Acidic Medium: Computational Study. Results in Surfaces and Interfaces 2024, 100184.

https://doi.org/10.1016/J.RSURFI.2024.100184

(64) Dagdag, O.; Hsissou, R.; El Harfi, A.; Berisha, A.; Safi, Z.; Verma, C.; Ebenso, E. E. E.; Ebn Touhami, M.; El Gouri, M., Fabrication of Polymer Based Epoxy Resin as Effective Anti-Corrosive Coating for Steel: Computational Modeling Reinforced Experimental Studies. Surfaces and Interfaces 2020, 18, 100454. https://doi.org/10.1016/j.surfin.2020.100454

(65) Sun, H.; Jin, Z.; Yang, C.; Akkermans, R. L. C.; Robertson, S. H.; Spenley, N. A.; Miller, S.; Todd, S. M., COMPASS II: Extended Coverage for Polymer and Drug-like Molecule Databases. J. Mol. Model. 2016, 22 (2), 1–10. https://doi.org/10.1007/s00894-016-2909-0

(66) Hsissou, R.; Dagdag, O.; Abbout, S.; Benhiba, F.; Berradi, M.; El Bouchti, M.; Berisha, A.; Hajjaji, N.; Elharfi, A. Novel Derivative Epoxy Resin TGETET as a Corrosion Inhibition of E24 Carbon Steel in 1.0 M HCl Solution. Experimental and Computational (DFT and MD Simulations) Methods. J. Mol. Liq. 2019, 284, 182–192. https://doi.org/10.1016/j.molliq.2019.03.180

(67) Abbout, S.; Zouarhi, M.; Chebabe, D.; Damej, M.; Berisha, A.; Hajjaji, N., Galactomannan as a New Bio-Sourced Corrosion Inhibitor for Iron in Acidic Media. Heliyon 2020, 6 (3), e03574.

https://doi.org/10.1016/j.heliyon.2020.e03574

(68) Dagdag, O.; Berisha, A.; Safi, Z.; Dagdag, S.; Berrani, M.; Jodeh, S.; Verma, C.; Ebenso, E. E. E. E.; Wazzan, N.; El Harfi, A., Highly Durable Macromolecular Epoxy Resin as Anticorrosive Coating Material for Carbon Steel in 3% NaCl: Computational Supported Experimental Studies. J. Appl. Polym. Sci. 2020, 137 (34). https://doi.org/10.1002/app.49003

(69) Berisha, A., The Influence of the Grafted Aryl Groups on the Solvation Properties of the Graphyne and Graphdiyne- A MD Study. Open Chem. 2019, 17 (1), 703–710. https://doi.org/10.1515/chem-2019-0083

(70) Klamt, A., COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design; Elsevier, 2005.

(71) Jarray, A.; Gerbaud, V.; Hemati, M., Polymer-Plasticizer Compatibility during Coating Formulation: A Multi-Scale Investigation. Prog. Org. Coatings 2016, 101, 195–206.

https://doi.org/10.1016/j.porgcoat.2016.08.008

(72) Molhi, A.; Hsissou, R.; Damej, M.; Berisha, A.; Thaçi, V.; Belafhaili, A.; Benmessaoud, M.; Labjar, N.; El Hajjaji, S., Contribution to the Corrosion Inhibition of C38 Steel in 1 M Hydrochloric Acid Medium by a New Epoxy Resin PGEPPP. Int. J. Corros. Scale Inhib 2021, 10 (1), 399–418.

https://doi.org/10.17675/2305-6894-2021-10-1-23

(73) Dagdag, O.; Hsissou, R.; Berisha, A.; Erramli, H.; Hamed, O.; Jodeh, S.; El Harfi, A., Polymeric-Based Epoxy Cured with a Polyaminoamide as an Anticorrosive Coating for Aluminum 2024-T3 Surface: Experimental Studies Supported by Computational Modeling. J. Bio- Tribo-Corrosion 2019, 5 (3), 1–13. https://doi.org/10.1007/s40735-019-0251-7

(74) Hsissou, R.; Benzidia, B.; Rehioui, M.; Berradi, M.; Berisha, A.; Assouag, M.; Hajjaji, N.; Elharfi, A., Anticorrosive Property of Hexafunctional Epoxy Polymer HGTMDAE for E24 Carbon Steel Corrosion in 1.0 M HCl: Gravimetric, Electrochemical, Surface Morphology and Molecular Dynamic Simulations. Polym. Bull. 2020, 77 (7), 3577–3601.

https://doi.org/10.1007/s00289-019-02934-5

(75) Mehmeti, V. V.; Berisha, A. R., Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid-an Experimental and Theoretical Study. Front. Chem. 2017, 61.

https://doi.org/10.3389/fchem.2017.00061

(76) Jessima, S. J. H. M.; Berisha, A.; Srikandan, S. S.; Subhashini, S., Preparation, Characterization, and Evaluation of Corrosion Inhibition Efficiency of Sodium Lauryl Sulfate Modified Chitosan for Mild Steel in the Acid Pickling Process. J. Mol. Liq. 2020, 320.

https://doi.org/10.1016/j.molliq.2020.114382

(77) Dagdag, O.; Hsissou, R.; El Harfi, A.; Safi, Z.; Berisha, A.; Verma, C.; Ebenso, E. E.; Quraishi, M. A.; Wazzan, N.; Jodeh, S.; El Gouri, M., Epoxy Resins and Their Zinc Composites as Novel Anti-Corrosive Materials for Copper in 3% Sodium Chloride Solution: Experimental and Computational Studies. J. Mol. Liq. 2020, 315, 113757. https://doi.org/10.1016/j.molliq.2020.113757

(78) Hsissou, R.; Abbout, S.; Berisha, A.; Berradi, M.; Assouag, M.; Hajjaji, N.; Elharfi, A., Experimental, DFT and Molecular Dynamics Simulation on the Inhibition Performance of the DGDCBA Epoxy Polymer against the Corrosion of the E24 Carbon Steel in 1.0 M HCl Solution. J. Mol. Struct. 2019, 1182, 340–351. https://doi.org/10.1016/j.molstruc.2018.12.030

Downloads

Published

2024-04-18

Versions

How to Cite

Berisha, A., Hadhlar, R., & Dagdag, O. (2024). Ab initio exploration of modified carbon nanotubes as potential corrosion inhibitors. Macedonian Journal of Chemistry and Chemical Engineering, 43(1). https://doi.org/10.20450/mjcce.2024.2806

Issue

Section

Theoretical Chemistry