Preparation, characterization, and use of trimethoxy[3-(methylamino)propyl]silane functionalized SBA-15 for Congo Red adsorption

Authors

  • Mukaddes Can Department of Chemical Engineering, Konya Technical University, Konya, Turkey
  • Suzan Albayati Department of Chemical Engineering, Konya Technical University, Konya, Turkey
  • Hani Zeidan Department of Chemical Engineering, Konya Technical University, Konya, Turkey
  • Mustafa Marti Department of Chemical Engineering, Konya Technical University, Konya, Turkey

DOI:

https://doi.org/10.20450/mjcce.2024.2867

Keywords:

SBA-15, Functionalization, Isotherm, Kinetics, Thermodynamics, Trimethoxy [3-(methylamino) propyl] silane

Abstract

Mesoporous materials have a broad range of applications in industry, and one of which is their potential use in adsorptive separations. This research investigates the use of a secondary amine-functionalized SBA-15 for the separation of a diazo dye, Congo Red (CR), from aqueous solutions. The synthesized SBA-15 was modified with trimethoxy[3-(methylamino)propyl] silane by a post-grafting method. The produced material was characterized using X-ray diffraction, N2 physisorption, scanning electron microscopy, and transmission electron microscopy. The hexagonal mesostructure was preserved after functionalization; however, the specific surface area, pore diameter, and total pore volume of SBA-15 silica decreased. The adsorption of the diazo dye reached equilibrium by 50 minutes, and the data followed pseudo-second-order kinetics. While the yield increased with rising dosage and temperature, it decreased with CR concentration. The maximum adsorption capacity of functionalized SBA-15 (F-SBA-15) for CR uptake was found to be 211.07 mg/g. Thermodynamic data and parameters indicated the potential combination of physical and chemical interactions occurring during the adsorption process. The separation was endothermic and non-spontaneous; the equilibrium data fitted to the Freundlich adsorption isotherm at all tested temperatures. This study demonstrates that the secondary amine-functionalized SBA-15 can be used for the elimination of a toxic anionic diazo dye from aqueous solutions.

References

(1) Liu, H.; Yu, H.; Jin, P.; Jiang, M.; Zhu, G.; Duan, Y.; Yang, Z.; Qiu, H., Preparation of mesoporous silica materials functionalized with various amino-ligands and investigation of adsorption performances on aro-matic acids. J. Chem. Eng. 2020, 379, 122405.

(2) Yokoi, T.; Kubota, Y.; Tatsumi, T., Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A-Gen. 2012, 421, 14–37.

(3) Pamungkas, N. S.; Wongsawaeng, D.; Swantomo, D.; Kamonsuangkasem, K.; Chio-Srichan, S., Exploring qualitative and quantitative decoration on amine-modified mesoporous silica for enhance adsorption performances. Eng. J. 2023, 27, 45–55.

(4) Shen, J.; Zhang, S.; Zeng, Z.; Huang, J.; Shen, Y.; Guo, Y., Synthesis of magnetic short-channel mesopo-rous silica SBA-15 modified with a polypyr-role/polyaniline copolymer for the removal of mercu-ry ions from aqueous solution. ACS Omega 2021, 6, 25791–25806.

(5) Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V., Modified SBA-15 mesoporous silica for heavy metal ions remedia-tion. Chemosphere 2008, 73, 1499–1504.

(6) Giraldo, L.; Moreno-Piraján, J. C., Study on the ad-sorption of heavy metal ions from aqueous solution on modified SBA-15. Mater. Res. 2013, 16, 745–754.

(7) Albayati, T. M.; Sabri, A. A.; Abed, D. B., Functional-ized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system. Desal-in. Water Treat. 2020, 174, 301–310.

(8) Liu, F.; Wang, A.; Xiang, M.; Hu, Q.; Hu, B., Effective adsorption and immobilization of Cr(VI) and U(VI) from aqueous solution by magnetic amine-functionalized SBA-15. Sep. Purif. Technol. 2022, 282, 120042.

(9) Masoudnia, S.; Juybari, M. H.; Mehrabian, R. Z.; Ebadi, M.; Kaveh, F., Efficient dye removal from wastewater by functionalized macromolecule chi-tosan-SBA-15 nanofibers for biological approaches. Int. J. Biol. Macromol. 2020, 165, 118–130.

(10) Zeidan, H.; Can, M.; Marti, M. E., Synthesis, charac-terization, and use of an amine-functionalized meso-porous silica SBA-15 for the removal of Congo Red from aqueous media. Res. Chem. Intermed. 2023, 49, 221–240.

(11) Gibson, L. T., Mesosilica materials and organic pollu-tant adsorption: Part A Removal from air. Chem. Soc. Rev. 2014, 43, 5163–5172.

(12) Yaghobi, N.; Hajiaghababaei, L.; Badiei, A.; Ganjali, M. R.; Mohammadi Ziarani, G., Controlled release of amoxicillin from bis(2-hydroxyethyl)amine function-alized SBA-15 as a mesoporous sieve carrier. J. Chem. Health Risks 2019, 9, 253–261.

(13) Uslu, H.; Marti, M., Equilibrium data on the reactive extraction of picric acid from dilute aqueous solutions using amberlite LA-2 in ketones. J. Chem. Eng. Data 2017, 62, 2132–2135

(14) Marti, M. E.; Zeidan, H., Evaluation of beet sugar pro-cessing carbonation sludge for the remediation of syn-thetic dyes from aqueous media. Int. J. Environ. Sci. Technol. 2023, 20, 3875–3890.

(15) Ariaeenejad, S.; Motamedi, E.; Salekdeh, G. H., High-ly efficient removal of dyes from wastewater using nanocellulose from quinoa husk as a carrier for im-mobilization of laccase. Bioresour. Technol. 2022, 349, 126833.

(16) Sarfraz, S.; Ullah, H.; Sikandar, S.; Raza, A., Use of nano-sized adsorbents for wastewater treatment: a re-view. Int. J. Econ. Environ. Geol. 2022, 13, 23–29.

(17) Bilal, M.; Ihsanullah, I.; Shah, M. U. H.; Reddy, A. V. B.; Aminabhavi, T. M., Recent advances in the re-moval of dyes from wastewater using low-cost adsor-bents. J. Environ. Manage. 2022, 321, 115981.

(18) Ali, K.; Zeidan H.; Amar, R. B., Evaluation of the use of agricultural waste materials as low-cost and eco-friendly sorbents to remove dyes from water: a re-view. Desalin. Water Treat. 2023, 302, 231–252.

(19) Salahshoor, Z.; Shahbazi, A., Modeling and optimiza-tion of cationic dye adsorption onto modified SBA-15 by application of response surface methodology. De-salin. Water Treat. 2016, 57, 13615–13631.

(20) Boukoussa, B.; Hakiki, A.; Moulai, S.; Chikh, K.; Kherroub, D. E.; Bouhadjar, L.; Guedal, D.; Messa-oudi, K.; Mokhtar, F.; Hamacha, R., Adsorption be-haviors of cationic and anionic dyes from aqueous so-lution on nanocomposite polypyrrole/SBA-15. J. Ma-ter. Sci. 2018, 53, 7372–7386.

(21) Boukoussa, B.; Mokhtar, A.; El Guerdaoui, A.; Hachemaoui, M.; Ouachtak, H.; Abdelkrim, S.; Addi, A. A.; Babou, S., Boudina, B.; Bengueddach, A.; Hamacha, R., Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: experimental and molecular dynamics study. J. Mol. Liq. 2021, 333, 115976.

(22) Abboud, M.; Sahlabji, T.; Haija, M. A.; El-Zahhar, A. A.; Bondock, S.; Ismail, I.; Keshk, S. M., Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the ad-sorption of methylene blue from wastewater. New J. Chem. 2020, 44 (6), 2291–2302.

(23) Khan, A. J.; Song, J.; Ahmed, K.; Rahim, A.; Volpe, P. L. O.; Rehman, F., Mesoporous silica MCM-41, SBA-15 and derived bridged polysilsesquioxane SBA-PMDA for the selective removal of textile reactive dyes from wastewater. J. Mol. Liq. 2020, 298, 111957.

(24) Meechai, T.; Poonsawat, T.; Limchoowong, N.; Lak-see, S.; Chumkaeo, P.; Tuanudom, R.; Yatsomboon, A.; Honghernsthit, L.; Somsook, E.; Sricharoen, P., One-pot synthesis of iron oxide-Gamma irradiated chi-tosan modified SBA-15 mesoporous silica for effec-tive methylene blue dye removal. Heliyon. 2023, 9.

(25) Siddiqui, S. I.; Allehyani, E. S.; Al-Harbi, S. A.; Ha-san, Z.; Abomuti, M. A.; Rajor, H. K.; Oh, S., Investi-gation of Congo Red toxicity towards different living organisms: a review. Processes. 2023, 11, 807.

(26) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.

(27) Bahalkeh, F.; Mehrabian, R. Z.; Ebadi, M., Removal of Brilliant Red dye (Brilliant Red E-4BA) from wastewater using novel Chitosan/SBA-15 nanofiber. Int. J. Biol. Macromol. 2020, 164, 818–825.

(28) Sujandi, Prasetyanto, E. A.; Park, S. E., Synthesis of short-channeled amino-functionalized SBA-15 and its beneficial applications in base-catalyzed reactions. Appl. Catal. A-Gen. 2008, 350, 244.

(29) Bhuyan, D.; Gogoi, A.; Saikia, M.; Saikia, R.; Saikia, L., Facile synthesis of gold nanoparticles on propyla-mine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria. Mater. Res. Express. 2015, 2, 075402.

(30) Zhang, F.; Yang, C.; Li, Y.; Chen, M.; Hu, S.; Cheng, H., The preparation of organophosphorus ligand-modified SBA-15 for effective adsorption of Congo red and Reactive red 2. RSC Adv. 2019, 9, 13476–13485.

(31) Vandarkuzhali, S. A. A.; Pachamuthu, M. P.; Sriniva-san, V. V.; Mohamed, S. K.; Abd Rabboh, H. S. M.; Hamdy, M. S.; Balamurugan, V. T., Efficient reduc-tion of dyes to leuco form over silver nanoparticles on functionalised SBA-15 and aminoclay. Int. J. Environ. Anal. Chem. 2022, 102, 6359.

(32) Wang, X.; Lin, K. S. K.; Chan, J. C. C.; Cheng S., Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B. 2005, 109, 1763.

(33) Paul, L.; Mukherjee, S.; Chatterjee, S.; Bhaumik, A.; Das, D., Organically functionalized mesoporous SBA-15 type material bearing fluorescent sites for selective detection of Hg(II) from aqueous medium. ACS Omega. 2019, 4, 17857.

(34) Yang, Y.; Cao, X.; Ma, Z.; Wu, G.; Zheng, L.; Zhang, Y., Adsorption of Cu(II) and Cr(III) ions on SBA-15 mesoporous silica functionalized by branched amine. Desalin. Water Treat. 2021, 213, 358.

(35) Sadjadi, S.; Heravi, M. M.; Zadsirjan, V.; Farzaneh, V., SBA-15/hydrotalcite nanocomposite as an efficient support for the immobilization of heteropolyacid: A triply-hybrid catalyst for the synthesis of 2-amino-4H-pyrans in water. Appl. Surf. Sci. 2017, 426, 881.

(36) Albaker, R. I. B.; Kocaman, S.; Marti, M. E.; Ahmetli G., Application of various carboxylic acids modified walnut shell waste as natural filler epoxy-based composites. J Appl. Polym. Sci. 2021, 138, e50770

(37) Bhuyan, D.; Saikia, L., Scavenging Pd2+ on amine-functionalized SBA-15: A facile synthesis of leach-free Pd0 nanocatalyst for base-free Chemoselective Transfer Hydrogenation of Olefins. ChemistrySelect. 2017, 2, 6350.

(38) Hafezian, S. M.; Biparva, P., Bekhradnia, A.; Azizi, S. N., Amine and thiol functionalization of SBA-15 nanoparticles for highly efficient adsorption of sulforaphane. Adv. Powder Technol. 2021, 32, 779.

(39) Huang, C. H.; Chang, K. P.; Ou, H. D.; Chiang, Y. C.; Wang, C. F., Adsorption of cationic dyes onto mesoporous silica. Micropor. Mesopor. Mat. 2011, 141, 102.

(40) Zhu, Y.; Li, H.; Zheng, Q.; Xu, J.; Li, X., Amine-functionalized SBA-15 with uniform morphology and well-defined mesostructure for highly sensitive chemosensors to detect formaldehyde vapor. Langmuir. 2012, 28, 7843.

(41) Hakiki, A.; Boukoussa, B.; Zahmani, H. H.; Hamacha, R.; Abdelkader, N. H. H.; Bekkar, B.; Bettahar, F.; Nunes-Beltrao, A. P.; Hacini, S.; Bengueddach, A.; Azzouz, A., Synthesis and characterization of mesoporous silica SBA-15 functionalized by mono-, di-, and tri-amine and its catalytic behavior towards Michael addition. Mater. Chem. Phys. 2018, 212, 415.

(42) Siavashani, A. Z.; Nazarpak, M. H.; Fayyazbakhsh, F.; Toliyat, T.; McInnes, S. J. P.; Solati-Hashjin, M., Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. J. Mater. Sci. 2016, 51, 10897.

(43) Ahmed, K.; Rehman, F.; Pires Cleo, T. G. V. M. T.; Rahim, A.; Santos, A. L.; Airoldi, C., Aluminum doped mesoporous silica SBA-15 for the removal of remazol yellow dye from water. Micropor. Mesopor. Mat. 2016, 236, 167.

(44) Goscianska, J.; Olejnik, A.; Nowak, I., APTES-functionalized mesoporous silica as a vehicle for antipyrine – adsorption and release studies. Colloids Surf. A: Physicochem. Eng. Aspects. 2017, 533, 187.

(45) Liou, T. H.; Chen, G. W.; Yang, S., Preparation of amino-functionalized mesoporous SBA-15 nanoparticles and the improved adsorption of tannic acid in wastewater. Nanomater. 2022, 12, 791.

(46) Klimova, T.; Esquivel, A.; Reyes, J.; Rubio, M.; Bokhimi, X.; Aracil, J., Factorial design for the evaluation of the influence of synthesis parameters upon the textural and structural properties of SBA-15 ordered materials. Micropor. Mesopor. Mat. 2006, 93, 331.

(47) Ali, K.; Zeidan, H.; Marti, M. E., Evaluation of olive pomace for the separation of anionic dyes from aqueous solutions: kinetic, thermodynamic, and isotherm studies. Desalin. Water Treat. 2021, 227, 412–424.

(48) Lagergren, S., Zur Theorie der sogenannten adsorptiongeloster Stoffe. Kungl. Svens. Vetenskapsakad. 1898, 24, 1–39.

(49) Ho, Y. S.; McKay, G., Pseudo second order model for sorption process. Process Biochem. 1999, 34, 451–465.

(50) Elovich, S. Y.; Larinov, O., Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk. 1962, 2, 209–216.

(51) Weber, W. J.; Morris, J. C., Water Pollution Symposium. Proc. Int. Conf. Pergamon Oxford., 2, 231–266, 1962.

(52) Asim, H.; Zeidan, H.; Marti, M. E., Effective isolation of succinic acid from aqueous media with the use of anion exchange resins. RSC Adv. 2024, 14, 16765–16777.

(53) Sağlam, S.; Türk, F. N.; Arslanoğlu, H., Use and applications of metal-organic frameworks (MOF) in dye adsorption. J. Environ. Chem. Eng. 2023, 110568.

(54) Zeidan, H.; Ozdemir, D.; Kose, N.; Pehlivan, E.; Ahmetli, G.; Marti, M. E., Separation of formic acid and acetic acid from aqueous solutions using sugar beet processing fly ash: characterization, kinetics, isotherms and thermodynamics. Desalin. Water Treat. 2020, 202, 283–294.

(55) Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y.; Li, C., Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 2010, 252, 149–156.

(56) Annadurai, G.; Juang, R. S.; Lee, D. J., Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 2002, 92, 263–274.

(57) Zeidan H.; Marti M. E., Efficient separation of levulinic acid using fly ash from sugar beet processing Chem. Biochem. Eng. Q. 2024, 38, 207–217.

(58) Lu, R.; Gan, W.; Wu, B. H.; Zhang, Z.; Guo, Y.; Wang, H. F., C−H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n = 1− 8) interfaces. J. Phys. Chem. B. 2005, 109, 14118–14129.

(59) Xia, C.; Jing, Y.; Jia, Y.; Yue, D.; Ma, J.; Yin, X., Adsorption properties of congo red from aqueous solution on modified hectorite: Kinetic and thermodynamic studies. Desalination. 2011, 265, 81–87.

(60) Chaudhuri, H.; Dash, S.; Sarkar, A., Synthesis and use of SBA-15 adsorbent for dye-loaded wastewater treatment. J. Environ. Chem. Eng. 2015, 3, 2866–2874.

(61) Abdelkader, E.; Nadjia, L.; Rose-Noëlle, V., Adsorption of Congo red azo dye on nanosized SnO2 derived from sol-gel method. Int. J. Ind. Chem. 2016, 7, 53–70.

(62) Khalaf, I. H.; Al-Sudani, F. T.; AbdulRazak, A. A.; Aldahri, T.; Rohani, S., Optimization of Congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach. Water Sci. Technol. 2021, 83, 1369–1383.

(63) Sholehah, F.; Taba, P.; Hala, Y.; Bahrun, B., Adsorption of congo red dyes using mesoporous silica MCM-48. In: AIP Conference Proceedings (Vol. 2360, No. 1). AIP Publishing. 2021.

(64) Pavan, F. A.; Dias, S. L.; Lima, E. C.; Benvenutti, E. V., Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes Pigm. 2008, 76, 64–69.

(65) Langmuir, I., The constitution and fundamental properties of solids and liquids, Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295.

(66) Freundlich, H.; Helle, W. J., Übber die Adsorption inlusungen. J. Am. Chem. Soc. 1939, 61, 2–28.

(67) Temkin, M. J.; Pyzhev, V. Recent modifications to Langmuir isotherms. Acta Physicochim. USSR. 1940, 12, 217–225.

(68) Ma, Y.; Qi, Y.; Yang, L.; Wu, L.; Li, P.; Gao, F.; Qi, X.; Zhang, Z., Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: Adsorption efficiency, mechanism and regeneration. J. Clean. Prod. 2021, 292, 126005.

(69) Can C. E., Zeidan, H.; Marti, M. E. Efficient recovery of itaconic acid using weak and strong anion Exchange resins from aqueous solutions. Ind. Eng. Chem. Res. 2024, 63, 5833−5844.

(70) Elhadj, M.; Samira, A.; Mohamed, T.; Djawad, F.; Asma, A.; Djamel, N., Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies. Sep. Sci. Technol. 2020, 55, 867–885.

Downloads

Additional Files

Published

2024-12-04

How to Cite

Can, M., Albayati, S., Zeidan, H., & Marti, M. (2024). Preparation, characterization, and use of trimethoxy[3-(methylamino)propyl]silane functionalized SBA-15 for Congo Red adsorption. Macedonian Journal of Chemistry and Chemical Engineering, 43(2). https://doi.org/10.20450/mjcce.2024.2867

Issue

Section

Chemical Engineering