Novel treatment for dye decolorization using a microreactor system and Fenton's reagent

Authors

DOI:

https://doi.org/10.20450/mjcce.2024.2903

Keywords:

anthraquinone dye, Fenton process, microreactor, AOP, decolorization

Abstract

Wastewater treatments in the textile industry faces many challenges, particularly due to the residues of used dyes, which are pollutants characterized by high chemical stability. One promising technology for addressing the issue is an advanced oxidation process (AOP), often utilizing Fenton's reagent as the oxidizing component. This study focuses on the degradation of the anthraquinone dye Acid Violet 109 using Fenton's reagent in a microfluidic reactor. The microreactor system consists of plunger pump units, a mixer, and a polytetrafluoroethylene (PTFE) tube. The influences of various process parameters have been analyzed, including the concentration of Fe2+, microreactor characteristics, the Fe2+/H2O2 molar ratio, and the total flow rate of the reaction mixture. The results show that treatment with Fenton's reagent is successful, with efficiencies between 82 and 99 %.

References

(1) Hijazi, B. U.; Faraj, M.; Mhanna, R.; El-Dakdouki M., Biosynthesis of silver nanoparticles as a reliable alter-native for the catalytic degradation of organic dyes and antibacterial applications, Curr Res Green Sustain Chem, 2024, 8, 100408.

https://doi.org/10.1016/j.crgsc.2024.100408

(2) Kamenická, B. Chemical degradation of azo dyes using different reducing agents: A review, J. Water Process. Eng., 2024, 61, 105350

https://doi.org/10.1016/j.jwpe.2024.105350

(3) Puasa, S. W.; Ruzitah, M. S.; Sharifah, A. S. A. K., Competitive removal of Reactive Black 5 / Reactive Orange 16 from aqueous solution via micellar-enhanced ultrafiltration, Int J Chem Eng Appl, 2012, 3 (5), 354–358. https://DOI:10.7763/IJCEA.2012.V3.217

(4) Mcyotto, F.; Wei, Q.; Macharia, D.; Huang, M.; Shen, C.; Chow, C.W.K., Effect of dye structure on color removal efficiency by coagulation, J. Chem. Eng, 2021, 405, 126674. https://doi.org/10.1016/j.cej.2020.126674

(5) Liang, C.-Z.; Sun, S.-P.; Li, F.-Y.; Ong, Y.-K.; Chung, T.-S., Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined pro-cess of coagulation/flocculation and nanofiltration, J. Mem. Sci., 2014, 469, 306–315.

https://doi.org/10.1016/j.memsci.2014.06.057

(6) Galán, J.; Rodríguez, A.; Gómez, J. M.; Allen, S. J.; Walker, G. M., Reactive dye adsorption onto a novel mesoporous carbon, Chem. Eng. J., 2013, 219, 62–68. https://doi.org/10.1016/j.cej.2012.12.073

(7) Namasivayam, C.; Arasi, D. J. S. E., Removal of con-go red from wastewater by adsorption onto waste red mud, Chemosphere, 1997, 34, 401–417.

https://doi.org/10.1016/S0045-6535(96)00385-2

(8) Manavi, N.; Sadegh Kazemi, A.; Bonakdarpour, B., The development of aerobic granules from conven-tional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater, Chem. Eng. J., 2017, 312, 375–384.

https://doi.org/10.1016/j.cej.2016.11.155

(9) Mijin, D.; Zlatić, D.; Ušćumlić, G.; Jovančić, P., Sol-vent effects on photodegradation of CI Reactive Or-ange 16 by simulated solar light, Hem. Ind., 2008, 62 (5), 275–281. http://dx.doi.org/10.2298/CICEQ0704179M.

(10) Ward, D. B.; Tizaoui, C.; Slater, M. J., Wastewater dye destruction using ozone-loaded VolasilTM245 in a con-tinuous flow liquid-liquid/ozone system. Chem. Eng. Process., 2006, 45, 124–139.

https://doi.org/10.1016/j.cep.2005.06.007

(11) Lee, W.; Marcotullio, S.; Yeom, H.; Son, H.; Kim, T.-H.; Lee, Y., Reaction kinetics and degradation effi-ciency of halogenated methylparabens during ozona-tion and UV/H2O2 treatment of drinking water and wastewater effluent, J Hazard Mater, 2022, 427, 127878.

https://doi.org/10.1016/j.jhazmat.2021.127878

(12) Svetozarević, M.; Šekuljica, N.; Knežević-Jugović, Z.; Mijin, D., Agricultural waste as a source of peroxidase for wastewater treatment: Insight in kinetics and pro-cess parameters optimization for anthraquinone dye removal, Environ. Technol. Innov., 2021, 21, 101289.

https://doi.org/10.1016/j.eti.2020.101289

(13) Asghar, A.; Raman, A. A. A.; Raman, W. M. A. W., Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Clean Prod., 2015, 87, 826–838.

https://doi.org/10.1016/j.jclepro.2014.09.010

(14) Laftani, Y.; Boussaoud, A.; Chatib B.; El Makhfouk, M.; Hachkar, M.; Khayar, M., Comparison of ad-vanced oxidation processes for degrading ponceaus dye: application of the photo-fenton process, Maced. J. Chem. Chem. Eng., 2019, 38, No. 2, 197–205.

https://doi.org/10.20450/mjcce.2019.1888

(15) Davarnejad, R.; Azizi, J.; Joodaki, A.; Mansoori, S., Optimization of electro-fenton oxidation of carbonat-ed soft drink industry wastewater using response sur-face methodology, 2020, Maced. J. Chem. Chem. Eng., 39 (2), 129–137. https://doi.org/10.20450/mjcce.2020.2101

(16) O’Shea, K. E.; Dionysiou, D., Advanced oxidation processes for water treatment, The Journal of Physical Chemistry Letters, 2012, 3 (15), 2112–2113.

https://doi.org/0.1021/jz300929x

(17) Deng, Y.; Zhao, R., Advanced oxidation processes (AOPs) in wastewater treatment, Water Pollution, 2015, 1, 167–176. https://doi.org/10.1007/s40726-015-0015-z

(18) Papić, S.; Vujevic, D.; Koprivanac, N.; Sinko, D., Re-active dye degradation by AOPs; Development of a kinetic model for UV/H2O2 Process, J Hazard Mater, 2009, 164 (2–3):1137–45.

https://doi.org/10.1016/j.jhazmat.2008.09.008

(19) Verma A.; Bhunia P.; Dash R. R., Decolorization and COD reduction efficiency of magnesium over iron based salt for the treatment of textile wastewater con-taining diazo and anthraquinone dyes, International Journal of Environmental, Chemical, Ecological, Geo-logical and Geophysical Engineering, 2014, 6, 365–372.

(20) Merouani, S.; Dehane, А.; Belghit, А.; Hamdaoui, O.; El Houda Boussalem, N.; Daif H., Removal of persis-tent textile dyes from wastewater by Fe(II)/H2O2/H3NOH+ integrating system: process per-formance and limitations, Environ. Sci. Adv., 2022, 1 (2), 192–207.

https://doi.org/10.1039/D2VA00011C

(21) Jovanovic J., Liquid-liquid microreactors for phase transfer catalysis, (PhD theses) 2011, Technische Universiteit Eindhoven, Eindhoven.

https://doi.org/10.6100/IR719772.

(22) Drhova, M.; Hejda, S.; Kristal, J.; Kluson, P., Perfor-mance of continuous micro photo reactor — compari-son with batch process, Proc Eng, 2012, 42, 1365–1372.

https://doi.org/10.1016/j.proeng.2012.07.528

(23) Dajić, A. S., Development of final treatment processes for solid and liquid pollutants by cleaner production principles application, 2019, University of Belgrade, Serbia. https://phaidrabg.bg.ac.rs/detail/o:21013#?q=dajic&page=1&pagesize=10.

(24) Ramos, B.; Ookawara, S.; Matsushita, Y.; Yoshikawa, S., Intensification of photochemical wastewater decol-orization process using microreactors, J Chem Eng J, 2014, 47, 136–140. https://doi.org/10.1252/jcej.13we025

(25) Shrestha, B.; Hernandez, R.; Fortela, D.L.B.; Sharp, W.; Chistoserdov, A.; Gang, D.; Revellame, E.; Holmes, W.E.; Zappi, M.E. Formulation of a Simulat-ed Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Explora-tion and Other Similar Situations—Literature-Based Composition Development, BioTech, 2023,12, 8.

https://doi.org/10.3390/biotech12010008

(26) Stupar, S.; Grgur, B.; Radišić, M.; Onjia, A.; Ivanković, N.; Tomašević, A.; Mijin, D. Oxidative degradation of Acid Blue 111 by electro-assisted Fen-ton process, Journal of Water Process Engineering, 2020, 36, 101394. https://doi.org/10.1016/j.jwpe.2020.101394.

(27) Basturk, E.; Karatas, M., Advanced oxidation of Reac-tive Blue 181 solution: A comparison between Fenton and sono-Fenton process, Ultrason Sonochem, 2014, 21, 5, 1881–1885. DOI: 10.1016/j.ultsonch.2014.03.026.

(28) Shen, Y.; XuQ.; Gao, D.; Shi, H., Degradation of an anthraquinone dye by Ozone/Fenton: response surface approach and degradation pathway, Ozone- Sci Eng, 2017, 39 (4), 219–232.

https://doi.org/10.1080/01919512.2017.1301245

(29) Laib, S.; Rezzaz Yazid, H.; Guendouz, N.; Belmedani, M; Sadao, Z., Heterogeneous Fenton catalyst derived from hydroxide sludge as an efficient and reusable catalyst for anthraquinone dye degradation, Sep Sci Technol, 2018, 54 (8), 1338–1352.

https://doi.org/10.1080/01496395.2018.1531892

(30) Dajić, A.; Mihajlović, M., Removal of the acid violet 109 from the textile industry wastewater using an ad-vanced oxidation process, In: International Congress on Process Engineering Proceedings 37th, May 2024, Belgrade. https://doi.org/10.24094/ptk.024.191

(31) Stupar, S.; Otřísal, P.; Ivanković, N.; Mijin, D.; Vuksa-nović, V.; Jančić Heinemann, M.; Samolov, A., Sin-tered magnesium ferrite particles in decolorization of anthraquinone dye AV109: Combination of adsorp-tion and Fenton process, Sci sinter, 2024, OnLine-First Issue 00, 9–9. https://doi.org/10.2298/SOS240219009S

(32) Svetozarević, M; Šekuljica, N.; Dajić, A.; Mihajlović, M.; Popovski, Z.; Mijin, D., Cross-linking the peroxi-dase: from potato peel valorization to colored effluents treatment, IOP Conf. Ser.: Earth Environ. Sci. 2022, 1123, 012005. DOI: 10.1088/1755-1315/1123/1/012005

Downloads

Published

2024-12-04

How to Cite

Dajić, A., & Mihajlovic, M. (2024). Novel treatment for dye decolorization using a microreactor system and Fenton’s reagent. Macedonian Journal of Chemistry and Chemical Engineering, 43(2). https://doi.org/10.20450/mjcce.2024.2903

Issue

Section

Chemical Engineering