Critical review of supercritical fluid extraction of selected spice plant materials
DOI:
https://doi.org/10.20450/mjcce.2011.35Keywords:
supercritical fluid extraction, spice plant materials, process parameters, global extraction yieldAbstract
Supercritical fluid extraction (SFE) is one of the relatively new efficient separation method for the extraction of essential oils from different plant materials. The new products, extracts, can be used as a good base for the production of pharmaceutical drugs and additives in the perfume, cosmetic, and food industries. The aim of this work was to analyze the supercritical carbon dioxide extraction (SC-CO2) of oils from the selected spice plant materials. In this paper the process parameters such as pressure, temperature, solvent flow rate, size of grinding materials, and ratio of the co-solvent were presented for the selected spice plant materials: black pepper, caraway, celery, cinnamon, clove, coriander, daphne, fennel, ginger, hyssop, juniper, lavender, oregano, pennyroyal, red pepper, safflower, sage, turmeric, and vanilla. The values of operating conditions were: pressure from 7.5 to 68 MPa, temperature from 293 to 363 K, solvent flow rate from 0.003 to 30.0 kg/h, and diameter of grinding material from 0.17 to 3.90 mm. The global yield and quality of the extracts all of the plant material investigated, as well as the possibility of their application in the food, cosmetics and pharmaceutical industries were analyzed. The composition of the extracts was wery complex, and in every case the extract was composed of more than 200 components. All the compounds from the CO2 extracts were classified in the following groups: monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene and other hydrocarbon groups. In some of the systems investigated the different mathematical models (Sovová, Hong), which have taken from the literature, were used to correlate the experimental data.References
M.A. McHugh, V.J. Krukonis, Supercritcal fluid extraction – Principles and Practice, Butterworth Publishers, Boston, 1986.
M. Mukhopadhyay, Natural extracts using super¬critical carbon dioxide, CRC Press., Boca Raton, London, New York, Washington, D. C., 2001.
S.R.S. Ferreira, Ž.L. Nikolov, L.K. Doraiswamy, M.A.A. Meireles, A.J. Petenate, Supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil, J. Supercrit. Fluids. 14, 235–245 (1999).
C. Perakis, V. Louli, K. Magoulas, Supercritical fluid extraction of black pepper oil, J. Food Eng. 71, 386–393 (2005).
Zh. Li., X. Lu, Sh. Chen, X. Zhang, X. Yuanjing, Y. Wei, Y., F. Xia, An experimental and simulating study of supercritical CO2 extraction for pepper oil, Chem. Eng. Process. 45, 264–267 (2006).
K. Bauer, D. Garbe, Common fragrance and flavor materials. Preparation, properties and uses, VCH Publishers, Weinheim, Germany, 1985.
T. Baysal, D.A., J. Starmans, Supercritical carbon dioxide extraction of carvone and limonene from caraway seed, J. Supercrit. Fluids. 14, 225–234 (1999).
H. Sovová, R. Komers, J. Kučera, J. Jež, Supercrit¬ical carbon dioxide extraction of caraway essential oil, Chem. Eng. Sci. 49, 2499–2505 (1994).
M. Cabizza, M., Cherchi, G., Marongiu, B., Por¬cedda, S., Satta, M., Stassi, Isolation of a volatile concentrate of caraway seed, J. Essent. Oil Research 13 371–375 (2001).
I. Papamichail, V. Louli, K. Magoulas, Supercriti¬cal fluid extraction of celery seed oil, Supercrit. Fluids 18, 213–226 (2000).
E. Daukšas, P.R. Venskutonis, B. Sivik, T. Nillson, Effect of fast CO2 pressure changes on the yield of lovage (Levisticum officinale Koch.) and celery (Apium graveolens L.) extracts, J. Supercrit. Flu¬ids 22, 201–210 (2002).
H. Liu, Ch. Liu, B. Li, Research on extraction and separation of oil from celery seeds by supercritical fluid extraction method, Science and Technology of Food Industry 6, (2008).
B. Marongiu, A. Piras, S. Porcedda, E. Tuveri, E. Sanjust, M. Meli, F. Sollai, P. Zucca, A. Rescigno, Supercritical CO2 Extract of Cinnamomum zey¬lanicum: Chemical characterization and antity¬rosinase activity, J. Agric. Food Chem. 55, 10022– 10027 (2007).
B. Huang, Y. Liu, Y. Chen, Y.Q. Liao, Study on extraction of cinnamon oil by supercritical carbon dioxide, Chem. & Industry of Forest Products 23, 59–62 (2003).
S. Zhao, H. Liang, Study of extraction of cinna¬mon oils from the bark of Cinnamomum cassia Presl by supercritical carbon dioxide, Polish J. of Chem. 80, 99–105 (2006).
G. Della Porta, R. Taddeo, E. D’Urso, E. Rever¬chon, Isolation of clove bud and star anise essen¬tial oil by supercritical CO2 extraction, Lebensm. 1-Wiss.Technol. 31, 454–460 (1998).
W. Guan, Sh. Li, R. Yan, Sh. Tang, C. Quan, Com¬parison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods, Food Chem. 101, 1558–1564 (2007).
F. Yazdani, M. Mafi, F. Farhadi, K. Tabar-Heidar, K. Aghapoor, F. Mohsenzadeh, H. R. Darabi, Su¬percritical CO2 extrcation of essential oil from clove bud: Effect of operation conditions on the selective isolation of eugenol and eugenyl acetate, Zeitschrift für Naturforschung – Section B, J. Chem. Sci. 60, 1197–1201 (2005).
G. Anitescu, C. Doneanu, V. Radulescu, Isolation of coriander oil: Comparison between steam dis¬tillation and supercritical CO2 extraction, Flavour Fragr. J. 12, 173–176 (1997).
V. Illés, H.G. Daood, S. Perneczki, L. Szokonya, M. Then, Extraction of coriander seed oil by CO2 and propane at super- and subcritical conditions, J. of Supercrit. Fluids 17, 117–186 (2000).
C. Grosso, V. Ferraro, A.C. Figueiredo, J.G. Bar¬roso, J.A. Coelho, A.M. Palavra, Supercritical car¬bon dioxide extraction of volatile oil from Italian coriander seeds, Food Chem. 111, 197–203 (2008).
B. Yepez, M. Espinosa, S. López, G. Bolaos, Pro¬ducing antioxidant fractions from herbaceous ma¬trices by supercritical fluid extraction, Fluid Phase Equil. 94–197, 879–884 (2002).
S. H. Beis, N. T. Dunford, Supercitical fluid ex¬traction of daphne (Laurus nobilis L.) seed oil, JA¬OCS 83, 953–957 (2006).
H. Marzouki, A.Piras, B. Marongiu, A.Rosa, M. A. Dessì, Extraction and separation of volatile and fixed oils from berries of Laurus nobilis L. by su¬percritical CO2, Molecules 13, 1702–1711 (2008).
B. Simándi, A. Deák, E. Ronyái, Y. Gao, T. Ver¬ess, E. Lemberkovics, M. Then, А. Sass-Kiss, Z. Vamos Falusi, Supercritical carbon dioxide extrac¬tion and fractionation of fennel oil J. Agric. Food Chem. 47, 1365–1640 (1999).
B. Damjanović, Ž. Lepojević, V. Živković, A. Tolić, Extraction of fennel (Foeniculum vulgare Mill.) seeds with supercritical CO2: Comparison with hydrodistillation, Food Chem. 92, 43–149 (2005).
J. Reverchon, C. Daghero, M. Marrone, M. Mat¬tea, M. Polleto, Supercritical fractional extraction of fennel seed oil and essential oil: Experiments and mathematical modeling, Ind. Eng. Chem. Res. 38, 3069–3075 (1999).
F. Yamini, S.M. Sefidkon, Pourmortazavi, Com¬parison of essential oil composition of Iranian fen¬nel (Foeniculum vulgare) obtained by supercriti¬cal carbon dioxide extraction and hydrodistillation methods, Flavour Fragr. J. 17, 345–348 (2002).
K. Kerrola, B. Galambosi, H. Kalliot, Volatile components and odor intensity of four phenotypes of hyssop (Hyssopus officinalis L.), J. Agric. Food Chem. 42, 776–781 (1994).
H. Kazazi, K. Rezaei, S. J. Ghotb-Sharif, Z. Emam-Djomeh, Y. Yamini, Supercriticial fluid extraction flavors and fragrances from Hyssopus officinalis L cultivated in Iran, Food Chem. 105, 805–811 (2007).
E. Langa, J. Cacho, AS.M.F. Palavra, J. Burillo, A.M. Mainar, J.S. Urieta, The evolution of hys¬sop oil composition in the supercritical extraction curve. Modelling of the oil extraction process, J. Supercrit. Fluids 49, 37–44 (2009).
K.C. Zancan, M.O.M. Marques, A.J. Petenate, M.A.M. Meireles, Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: Study of the antioxidant action of the oil extracts, J. Supercrit. Fluids 24, 57–76 (2002).
J. Martínez, A.R. Monteiro, P.T.V. Rosa, M.O.M. Marques, M. Angela, A. Meireles, Multicompo¬nent Model to Describe Extraction of Ginger Oleo¬resin with Supercritical Carbon Dioxide, Ind. Eng. Chem. Res. 42, 1057–1063 (2003).
B. Barjaktarović, M. Sovilj, Ž. Knez, Supercritical fluid extraction of Juniperus communis L., Pro¬ceedings of the 6th International Symposium “In¬terdisciplinary Regional Research”, October 3–4, 2002, Novi Sad, Yugoslavia, p. S4–428.
B. Barjaktarović, Ž. Knez, M. Sovilj, Extraction of Juniperus communis L. with supercritical carbon dioxide, Proceedings of the 4th European Con¬gress of Chemical Enginering, Sept. 20–22, 2003, Granada, Spain
B. Barjaktarović, Ž. Knez, M. Sovilj, Extraction of Juniperus communis L. with supercritical carbon dioxide, Proceedings of the 4th European Con¬gress of Chemical Engineering, September 20–22, 2003, Granada, Spain. CD-ROM, P-12.2–011.
B. Barjaktarović, M. Sovilj, Ž. Knez, Chemical composition of Juniperus communis L. fruits su¬percritical CO2 extracts: Dependence on pressure and extraction time, J. Agric. Food Chem. 53, 2630–2636 (2005).
B.G. Nikolovski, Kinetics and mathematical mod¬eling of juniper berry (Juniper communis L.) es¬sential oil and pumpkin seed (Cucurbita pepo L.) oil by supercritical carbon dioxide, Ph.D. Thesis, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia, 2009.
B.Marongiu, S. Porcedda, A. Piras, G. Sanna, M. Murreddu, R. Loddo, Extraction of essential oil by supercritical carbon dioxide Juniperus communis L. ssp. nana Willd, Flavour Fragr. J. 21, 148–154 (2006).
B. Damjanović, D. Skala, J. Baras, D. Petrović- Djakov, Isolation of essential oil and supercriti¬cal carbon dioxid extract of Juniperus communis L. fruits from Montenegro, Flavour Fragr. J. 21, 875–880 (2006).
E. Reverchon, G. Della Porta, G.F. Senatore, Su¬percritical CO2 extraction and fractionation of lav¬ender essentiall and waxes, J. Agric. Food Chem. 43, 1654–1658 (1995).
C. Da Porto, D. Decorti, I. Kikić, Flavour com¬pounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods, Food Chem. 12, 1072–1078 (2009).
M. Akgün, N.A. Akgün, S. Dinçer, S., Extraction and modeling of lavender flower essential oil using supercritical carbon dioxide, Ind. Eng. Chem. Res. 39, 473–477 (2000).
E. Vági, B. Simándi, A. Suhajda, Ė. Héthely. Es¬sential oil composition and antimicrobial activity Origanum majorana L. extracts obtained with eth¬yl alcohol and supercritical carbon dioxide, Food Res. Internat. 38, 51–57 (2005).
M.R.A. Rodriges, L.C. Krause, E.B.C. Jonathan, G. dos Santos, C.D., J.V. De Oliviera, Chemical Composition and Extraction Yield of the Extract of Origanum vulgare Obtained from Sub- and Supercritical CO2, J. Agric. Food Chem. 52, 3042–3047 (2004).
E. Vágy, B. Simándi, H.G. Daood, A. Deak, J. Sawinski, Recovery of pigments from Origanum majorana L. Extraction with supercritical carbon dioxide, J. Agric. Food Chem. 50, 2297–2301 (2002).
N. Aghel, Y. Yamini, A. Hadjiakhoondi, S. M. Pourmortazavi, Supercritical carbon dioxide ex¬traction of Mentha pulegium L. essential oil, Ta¬lanta 62, 407–411 (2004).
E.M.C. Reis-Vasco, J.A.P. Coelho, A.M.F. Pala¬vra, Comparison of pennyroyal oils obtained by supercritical CO2 extraction and hydrodistillation. Flavour Fragr. J. 14, 156–160 (1999).
H.G. Daood, V. Illés, M.H. Gnayfeed, B. Mészáros, G. Horváth, P. Biacs, Extraction of pungent spice paprika by supercritical carbon dioxide and sub¬critical propane, J. Supercrit. Fluids 23, 143–152 (2002).
E. Uquiche, J.M. del Valle, J. Ortiz, Supercritical carbon dioxide extraction of red pepper (Capsi¬cum annuum L.) oleoresin, J. Food Eng. 65, 55–66 (2004).
X. Han, L. Cheng, R. Zhang, J. Bi, Extraction of safflower seed oil by supercritical CO2, J. Food Eng. 92, 370–376 (2009).
X.J. Han, R. Zhang, J.C. Bi, Extraction of essential oil and carthamin from safflower dreg with super¬critical CO2, Guocheng Gongcheng Xuebao /The Chinese J. Proc. Eng. 9, 689–694 (2009).
S.A. Aleksovski, H. Sovová, Supercritical CO2 ex¬traction of Salvia officinalis L., J. Supercrit. Fluids 40, 239–245 (2007).
С. Glišić, Ј. Ivanović, М. Ristić, D. Skala, D., Ex¬traction of sage (Salvia officinalis L.) by supercrit¬ical CO2: Kinetic data, chemical composition and selectivity of diterpenes, J. Supercrit. Fluids 52, 62–70 (2010).
M.E.M. Braga, M.A.A. Meireles, Accelerated sol¬vent extraction and fractioned extraction to obtain the Curcuma longa volatile oil and oleoresin, J. Food Process Eng. 30, 501–521 (2007).
B. Gopalan, B., M. Goto, A. Kodama, T. Hirose, Supercritical carbon dioxide extraction of turmeric (Curcuma longa), J. Agric. Food Chem. 48, 2189– 2192 (2000).
K. Nguyen, P. Barton, J.S. Spencer, Supercritical carbon dioxide extraction of vanilla, J. Supercrit. Fluides 4, 40–46 (1991).
R.F. Rodrigues, A.K. Tashima, R.M.S. Pereira, R.S. Mohamed, F.A. Cabral, Coumarin solubility and extraction from emburana (Torresea cearen¬sis) seeds with supercritical carbon dioxide, J. Su¬percrit. Fluids 43, 375–382 (2008).
H. Sovová, Rate of the vegetable oil extract with supercritical CO2. I. Modeling of extraction curves, Chem. Eng. Sci. 49, 409–414 (1994).
H. Sovová, J. Kučera, J. Jež, Rate of the vegetable oil extraction with supercritical CO2. II. Extraction of grape oil, Chem. Eng. Sci. 49, 415–420 (1994).
H. Sovová, J. Jež, M. Bártlová, J. Stástová, Super¬critical carbon dioxide extraction of black pepper, J. Supercrit. Fluids 8, 295–309 (1995).
V.M.R., Rodrigues, P.T.V. Rosa, M.O.M. Marques, A.J. Petenate, M.A.A. Meireles, Supercritical ex¬traction of essential oil from aniseed (Pimpinella anisum L.) using CO2: Solubility, kinetics, and composition data, J. Agric. Food Chem. 51, 1518– 1523 (2003).
S. G. Özkal, M. E. Yener, L. Bayindirli, Mass transfer modelling of apricot kernel oil extraction with supercritical carbon dioxide, J. Supercrit. Fluids 35, 119–127 (2005).
I. K. Hong, S. W. Rho, K. S. Lee, K. P. Yoo, Mod¬eling of soybean oil bed extraction with super¬critical carbon dioxide, Korean J. Chem. Eng. 7, 40–46 (1990).
I. Chrastil, Solubility of solids and liquids in su¬percritical gases, J. Phys. Chem. 86, 3016–3021 (1982).
I. Žižović, I. Stamenić, A. Orlović, D. Skala, Su¬percritical carbon dioxide essential oil extraction of Laminaceae family species: Mathematical modelling on the micro-scale and process optimi¬zation. Chem. Eng. Sci. 60, 6747–6756 (2005).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.