Artemisinins and synthetic peroxides as highly efficient antimalarials

Authors

  • Dejan Milos Opsenica Institute of Chemistry, Technology and Metallurgy, University of Belgrade
  • Bogdan Aleksandar Šolaja Faculty of Chemistry, University of Belgrade

DOI:

https://doi.org/10.20450/mjcce.2012.50

Keywords:

Antimalarials, artemisinin, peroxides, trioxanes, trioxolanes, tetraoxanes, chimeras.

Abstract

Malaria is devastating disease and global public health problem, with nearly half world population exposed to risk. Illness is caused by five Plasmodium species, P. falciparum, P. ovale, P. vivax, P. malarie and P. knowlesi, from which P. falciparum is the most serious one causing cerebral malaria and is the major reason for malaria mortality. Vaccine against malaria is not expected in the near future and chemotherapy remains as most feasible alternative for treatment of the disease. The development of widespread drug-resistance to chloroquine (CQ), the most successful antimalarial drug up to date, has resulted in severe health issues for countries in malaria endemic regions. Organic peroxides, like artemisinins, 1,2,4-trioxanes, 1,2,4-trioxolanes, 1,2,4,5-tetraoxanes and their chimeras, are the best choice for malaria treatment nowadays.  These therapeutics are fast acting, non-toxic, low costing and without reported data of parasite resistance. Stability of peroxide bonds enables synthetic comfort and resulting in diversity of synthesised structures. The most important classes of peroxide antimalarials with promising representatives are reviewed and possible mechanisms of action were presented in details.

References

. Malaria Foundation International, http://www.malaria.org/ (accessed May, 2012)

. C. Hay, A. Guerra, A. Tatem, R. Noor, R. Snow, The global distribution and population at risk of malaria: past, present and future, Lancet Infect. Dis., 4, 327-336, (2009).

. S. L. Hoffman, G. M. Subramanian, F. H. Collins, J. C. Venter, Plasmodium, human and Anopheles genomics and malaria, Nature, 415, 702-709 (2002).

. A. Maxmen, Malaria surge feared (The WHO releases action plan to tackle the spread of insecticide-resistant mosquitoes), Nature, 485, 293, (2012).

. World Health Organization, Global Malaria programme (GMP), http://www.who.int/malaria/ (accessed May, 2012)

. X.-D. Luo and C.-C. Shen, The Chemistry, Pharmacology and Clinical Applications of Qinghaosu (Artemisinin) and Its Derivatives, Med. Res. Rev., 7, 29-52, (1987).

. (a) D. L. Klayman, Quinghaosu (Artemisinin): An Antimalarial Drug from China, Science, 228, 1049-1055, (1985); (b) K. Borstnik, I.-H. Paik, T. A. Shapiro, G. H. Posner, Antimalarial chemotherapeutic peroxides: artemisinin, yingzhaosu A and related compounds, Int. J. Parasitology, 32, 1661-1667 (2002); (c) K. Borstnik, I.-H. Paik, T. A. Shapiro, G. H. Posner, Malaria: New Chemotherapeutic Peroxide Drugs, Mini Rev. Med. Chem., 2, 573-583 (2002); (d) Y. Lin, Y.-L. Wu, An Over Four Millennium Story Behind Qinghaosu (Artemisinin)-A Fantastic Antimalarial Drug from a Traditional Chinese Herb, Current Med. Chem., 10, 2197-2230 (2003); (e) P. M. O’Neill, G. H. Posner, A Medicinal Chemistry Perspective on Artemisinin and Related Endoperoxides, J. Med. Chem., 47, 2945-2964 (2004); (f) Y. Tang, Y. Dong, J. L. Vennerstrom, Synthetic Peroxides as Antimalarials, Med. Res. Rev., 24, 425-448 (2004); (g) A. Masuyama, J.-M. Wu, M. Nojima, H.-S. Kim, Y. Wataya, 1,2,4,5-Tetraoxacycloalkanes: Synthesis and Antimalarial Activity, Mini Rev. Med. Chem., 5, 1035-1043, (2005), h) R. D. Slack, A. M. Jacobine, G. H. Posner, Antimalarial peroxides: advances in drug discovery and design, Med. Chem. Commun., 3, 281-297 (2012).

. D. M. Opsenica, B. A. Šolaja, Antimalarial Peroxides, J. Serb. Chem. Soc., 74, 1155-1193 (2009).

. Dejan M. Opsenica, Bogdan A. Šolaja, Second-Generation Peroxides: The OZs and Artemisone in Treatment and Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use, Henry M. Staines, Sanjeev Krishna, (Eds.); Series: Milestones in Drug Therapy; Series Editors: Michael J. Parnham, Jacques Bruinvels. Springer, Basel, 2012, pp. 191-211.

. R. Jambou, E. Legrand, M. Niang, N. Khim, P. Lim, B. Volney, M. T. Ekala, C. Bouchier, P. Esterre, T. Fandeur, O. Mercereau-Puijalon, Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6, Lancet, 366, 1960-1963, (2005).

. L. H. Miller, D. I. Baruch, K. Marsh, O. K. Doumbo, The pathogenic basis of malaria, Nature, 415, 673-679, (2002).

. (a) C. E. Chitnis, M. J. Blackman, Host Cell Invasion by Malaria Parasites, Parasitology Today, 16, 411-415, (2000); (b) L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, G.H. Mitchell, A Brief Illustrated Guide to the Ultrastructure of Plasmodium falciparum Asexual Blood Stages, Parasitology Today, 16, 427-433, (2000); (c) P. Baldacci, R. Ménard, The elusive malaria sporozoite in the mammalian host Mol. Microbiology, 54, 298-306, (2004); (d) B. M. Cooke, K. Lingelbach, L. H. Bannister, L. Tilley, Protein trafficking in Plasmodium falciparum-infected red blood cells Trends in Parasitology, 20, 581-589, (2004); (e) P. D. Parker, L. Tilley, Nectarios Klonis, Plasmodium falciparum induces reorganization of host membrane proteins during intraerythrocytic growth Blood, 103, 2404-2406, (2004); (f) J. M. Przyborski, M. Lanzer, Protein transport and trafficking in Plasmodium falciparum-infected erythrocytes, Parasitology, 130, 373-388, (2005).

. M. Frédérich, J.-M. Dogné, L. Angenot, P. De Mol, New Trends in Anti-Malarial Agents Curr. Med. Chem., 9, 1435-1456, (2002).

. S. E. Francis, D. J. Sullivan Jr., D. E. Goldberg, Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 51, 97-123, (1997).

. (a) S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, S. K. Madsen, The structure of malaria pigment β-haematin Nature, 404, 307-310, (2000); (b) D. J. Sullivan, Theories on malarial pigment formation and quinoline action, Int. J. Parasitol., 32 1645-1653, (2002).

. D. Monti, B. Vodopivec, N. Basilico, P. Olliaro and D. Taramelli, A Novel Endogenous Antimalarial: Fe(II)-Protoporphyrin IXα (Heme) Inhibits Hematin Polymerization to β-Hematin (Malaria Pigment) and Kills Malaria Parasites, Biochemistry, 38 8858-8863, (1999).

. D. Jeremić, A. Jokić, A. Behbud and M. Stefanović, “New Type of Sesquiterpene Lactones Isolated From Artemisia Annua L. - Ozonide of Dihydroarteannuin” 8th International Symposium on The Chemistry of Natural Products New Delhi, 1972, C-54, 221.

. G. Schmid, W. Hofheinz, Total Synthesis of Qinghaosu, J. Am. Chem. Soc., 105, 624-625, (1983).

. Examination of Chemical Abstracts database afforded 35 references related to synthetic efforts towards 1 and structurally close derivatives, including one that enables synthesis of isotopically labelled artemisinin, M. A. Avery, W. K. M. Chong, C. Jenning-White, J. Am. Chem. Soc., 114 974-979, (1992)

. J. S. Yadava, R. S. Babu, G. Sabitha, Stereoselective total synthesis of (+)-artemisinin Tetrahedron Lett., 44, 387-389, (2003).

. H.-D. Hao, Y. Li, W.-B. Han, Y. Wu, A Hydrogen Peroxide Based Access to Qinghaosu (Artemisinin), Org. Lett., 13, 4212-4215,, (2011).

. a) F. Lévesque, P. H. Seeberger, Continuous-Flow Synthesis of the Anti-Malaria Drug Artemisinin, Angew. Chem. Int. Ed., 51, 1706 –1709, (2012).; b) Kevin Booker-Milburn , A light touch to a deadly problem, Nature Chemistry, 4, 433, (2012).

. Average results obtained from greater than eight replicates. Internal WRAIR data

. M. A. Fügi, S. Wittlin, Y. Dong, J. L. Vennerstrom, Probing the Antimalarial Mechanism of Artemisinin and OZ277 (Arterolane) with Nonperoxidic Isosteres and Nitroxyl Radicals,

Antimicrob. Agen. Chemother., 54, 1042–1046, (2010).

. M. Jung, X. Li, D. A. Bustos, H. N. ElSohly, J. D. McChesney, W. K. Milhous, Synthesis and Antimalarial Activity of (+)-Deoxoartemisinin, J. Med. Chem., 33, 1516-1518, (1990).

. M. A. Avery, P. Fan, J. M. Karle, J. D. Bonk, R. Miller, D. K. Goins, Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 3. Total Synthesis of (+)-13-Carbaartemisinin and Related Tetra- and Tricyclic Structures J. Med. Chem. 39, 1885-1897 (1996).

. a) S. L. Smitha, C. J. Sadler, C. C. Dodd, G. Edwards, S. A. Ward, B. K. Park, W. G. McLeana, The role of glutathione in the neurotoxicity of artemisinin derivatives in vitro, Biochem. Pharmacol., 61, 409–416, (2001). b) S. L. Smith, J. Fishwick, W. G. McLean, G. Edwards, S. A. Ward, Enhanced In Virgo Neurotoxicity of Artemisinin Derivatives in the Presence of Haemin, Biochem. Pharmacol., 53, 5–10, (1997).

. A. Nontprasert, S. Pukrittayakamee, S. Prakongpan, W. Supanaranond, S. Looareesuwan, N. J. White, Assessment of the neurotoxicity of oral dihydroartemisinin in mice, Transcaction of the Royal Society of Tropical medicine and Hygiene, 96, 99-101, (2002).

. A. J. Lin, D. L. Klayman and W. K. Milhous, Antimalarial Activity of New Water-Soluble Dihydroartemisinin Derivatives, J. Med. Chem., 30, 2147-2150, (1987).

. A. J. Lin, M. Lee, D. L. Klayman, Antimalarial Activity of New Water-Soluble Dihydroartemisinin Derivatives. 2. Stereospecificity of the Ether Side Chain, J. Med. Chem., 32 1249-1252, (1989).

. Q. Li, L. H. Xie, T. O. Johnson, Y. Si, A. S. Haeberle, P. J. Weina, Toxicity evaluation of artesunate and artelinate in Plasmodium berghei-infected and uninfected rats, Trans. R. Soc. Trop. Med. Hyg., 101, 104-112, (2007).

. R. F. Genovese, D. B. Newman, T. G. Brewer, Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats, Pharmacol. Biochem. Behav., 67, 37-44, ( 2000).

. Y. Si, Q.-G. Li, L. Xie, K. Bennett, P. J. Weina, S. Mog, T. O. Johnson, Neurotoxicity and Toxicokinetics of Artelinic Acid Following Repeated Oral Administration in Rats, Int. J. Toxicol., 26, 401-410, (2007).

. C. Singh, R. Kanchan, S. Chaudhary, S. K. Puri, Linker-Based Hemisuccinate Derivatives of Artemisinin: Synthesis and Antimalarial Assessment against Multidrug-Resistant Plasmodium yoelii nigeriensis in Mice1, J. Med. Chem., 55, 1117−1126, (2012).

. A. J. Lin, R.E. Miller, Antimalarial Activity of New Dihydroartemisinin Derivatives. 6. α-Alkylbenzylic Ethers, J. Med. Chem., 38, 764-770, (1995).

. P. M. O'Neill, A. Miller, L. P. D. Bishop, S. Hindley, J. L. Maggs, S. A. Ward, S. M. Roberts, F. Scheinmann, A. V. Stachulski, G. H. Posner, B. K. Park, Synthesis, Antimalarial Activity, Biomimetic Iron(II) Chemistry, and in Vivo Metabolism of Novel, Potent C-10-Phenoxy Derivatives of Dihydroartemisinin J. Med. Chem., 44, 58-68, (2001).

. (a) M. A. Avery, J. D. Bonk, W. K. M. Chong, S. Mehrotra, R. Miller, W. Milhous, D. K. Goins, S. Venkatesan, C. Wyandt, I. Khan and B. A. Avery, Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 2. Effect of Heteroatom Substitution at O-11: Synthesis and Bioassay of N-Alkyl- 1 l-aza-9-desmethylartemisinin J. Med. Chem., 38, 5038-5044, (1995); (b) D. S. Torok, H. Ziffer, S. R. Meshnick, X.-Q. Pan and A. Ager, Syntheses and Antimalarial Activities of N-Substituted 11-Azaartemisinins J. Med. Chem., 38, 5045-5050, (1995); (c) B. Mekonnen, E. Weiss, E. Katz, J. Ma, H. Ziffer and D. E. Kyle, Synthesis and Antimalarial Activities of Base-Catalyzed Adducts of 11-Azaartemisinin, Bioorg. Med. Chem., 8, 1111-1116, (2000).

. M. A. Avery, S. Mehrotra, T. L. Johnson, J. D. Bonk, J. A. Vroman, R. Miller, Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 5. Analogs of 10-Deoxoartemisinin Substituted at C-3 and C-9 J. Med. Chem. 39, 4149-4155, (1996).

. M. A. Avery, M. Alvim-Gaston, J. A. Vroman, B. Wu,A. Ager, W. Peters, B. L. Robinson, William Charman, Structure-Activity Relationships of the Antimalarial Agent Artemisinin. 7. Direct Modification of (+)-Artemisinin and In Vivo Antimalarial Screening of New, Potential Preclinical Antimalarial Candidates, J. Med. Chem. 45, 4321-4335, (2002).

. G. H. Posner, M. H. Parker, J. Northorp, J. S. Elias, P. Ploypradith, S. Xie, T. A. Shapiro, Orally Active, Hydrolytically Stable, Semisynthetic, Antimalarial Trioxanes in the Artemisinin Family J. Med. Chem., 42, 300-304, (1999).

. G. H. Posner, P. Ploypradith, M. H. Parker, H. O’Dowd, S.-H. Woo, J. Northrop, M. Krasavin, P. Dolan, T. W. Kensler, S. Xie, T. A. Shapiro, Antimalarial, Antiproliferative, and Antitumor Activities of Artemisinin-Derived, Chemically Robust, Trioxane Dimers J. Med. Chem., 42, 4275-4280, (1999).

. I.-H. Paik, S. Xie, T. A. Shapiro, T. Labonte, A. A. N. Sarjeant, A. C. Baege, G. H. Posner, Second Generation, Orally Active, Antimalarial, Artemisinin-Derived Trioxane Dimers with

High Stability, Efficacy, and Anticancer Activity J. Med. Chem., 49, 2731-2734, (2006).

. G. H. Posner, I.-H. Paik, W. Chang, K. Borstnik, S. Sinishtaj, A. S. Rosenthal, T. A. Shapiro, Malaria-Infected Mice Are Cured by a Single Dose of Novel Artemisinin Derivatives J. Med. Chem. 50, 2516-2519, (2007).

. G. H. Posner, W. Chang, L. Hess, L. Woodard, S. Sinishtaj, A. R. Usera, W. Maio, A. S. Rosenthal, A. S. Kalinda, J. G. D’Angelo, K. S. Petersen, R. Stohler, J. Chollet, J. Santo-Tomas, C. Snyder, M. Rottmann, S. Wittlin, R. Brun, T. A. Shapiro, Malaria-Infected Mice Are Cured by Oral Administration of New Artemisinin Derivatives, J. Med. Chem. 51 1035-1042, (2008).

. R. K. Haynes, W.-Y. Ho, H.-W. Chan, B. Fugmann, J. Stetter, S. L. Croft, L. Vivas, W. Peters, L. Robinson, Highly Antimalaria-Active Artemisinin Derivatives: Biological Activity Does Not Correlate with Chemical Reactivity, Angew. Chem. Int. Ed., 43, 1381-1385, (2004).

. R. K. Haynes, B. Fugmann, J. Stetter, K. Rieckmann, H.-D. Heilmann, H.-W. Chan, M.-K. Cheung, W.-L. Lam, H.-N. Wong, S. L. Croft, L. Vivas, L. Rattray, L. Stewart, W. Peters, B. L. Robinson, M. D. Edstein, B. Kotecka, D. E. Kyle, B. Beckermann, M. Gerisch, M. Radtke, G. Schmuck, W. Steinke, U. Wollborn, K. Schmeer, A. Römer, Artemisone-a highly active antimalarial drug of the artemisinin class. Angew. Chem. Int. Ed., 45, 2082-2088, (2006).

. S. D’Alessandro, M. Gelati, N. Basilico, E. A. Parati, R. K. Haynes, D. Taramelli, Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: Implications for embryotoxicity, Toxicology, 241, 66–74, (2007).

. L. Vivas, L. Rattray, L. B. Stewart, B. L. Robinson, B. Fugmann, R. K. Haynes, W. Peters, S. L. Croft, Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo, J. Antimicrob. Chemoth., 59, 658–665, (2007).

. J. Nagelschmitz, B. Voith, G. Wensing, A. Roemer, B. Fugmann, R. K. Haynes, B. M. Kotecka, K. H. Rieckmann, M. D. Edstein, First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob. Agents. Ch., 52, 3085–3091, (2008).

. T. G. Brewer, S. J. Grate, J. O. Peggins, P. J. Weina, J. M. Petras, B. S. Levine, M. H. Heiffer, B. G. Schuster, Fatal neurotoxicity of arteether and artemether, Am. J. Trop. Med. Hyg., 51, 251–259, (1994).

. N. III Obaldia, B. M. Kotecka, M. D. Edstein, R. K. Haynes, B. Fugmann, D. E. Kyle, K. H. Rieckmann, Evaluation of artemisone combinations in aotus monkeys infected with Plasmodium falciparum, Antimicrob. Agents. Ch., 53, 3592–3594, (2009).

. C. W. Jefford, J. A. Velarde, G. Bernardinelli, D. H. Bray, D. C. Warhurst, W. K. Milhous, Synthesis, Structure and Antimalarial Activity of Tricyclic 1,2,4-Trioxanes Related to Artemisinin, Helv. Chim. Acta, 76, 2775- 2788, (1993).

. C. W. Jefford, S. Kohmoto, D. Jaggi, G. Timari, J.-C. Rossier, M. Rudaz, O. Barbuzzi, D. Gerard, U. Burger, P. Kamalaprija, J. Mareda, G. Bernardinelli, Synthesis, Structure and antimalarial Activity of some Enantiomerically Pure cis-Fused Cyclopenteno-1,2,4-Trioxanes, Helv. Chim. Acta, 78, 647-662 (1995).

. G. H. Posner, C. H. Oh, D. Wang, L. Gerena, W. K. Milhous, S. R. Meshnick, W. Asawamahasadka, Mechanism-Based Design, Synthesis, and in Vitro Antimalarial Testing of New 4-Methylated Trioxanes Structurally Related to Artemisinin: The Importance of a Carbon-Centered Radical for Antimalarial Activity, J. Med. Chem., 37, 1256-1258, (1994).

. G. H. Posner, H. B. Jeon, M. H. Parker, M. Krasavin, I.-H. Paik, T. A. Shapiro, Antimalarial Simplified 3-Aryltrioxanes: Synthesis and Preclinical Efficacy/Toxicity Testing in Rodents, J. Med. Chem., 44, 3054-3058, (2001).

. C. Singh, N. Gupta, S. K. Puri, Photooxygenation of 3-aryl-2-cyclohexenols: synthesis of a new series of antimalarial 1,2,4-trioxanes, Tetrahedron Lett., 46, 205-207, (2005).

. C. W. Jefford, New developments in synthetic peroxidic drugs as artemisinin mimics Drug Discovery Today, 12, 487-495, (2007).

. C. Singh, N. Gupta, S. K. Puri, Geraniol-Derived 1,2,4-Trioxanes with Potent In-Vivo Antimalarial Activity, Bioorg. Med. Chem. Lett., 13, 3447-3450, (2003).

. C. Singh, N. C. Srivastav, S. K. Puri, Synthesis and antimalarial activity of 6-cycloalkylvinyl substituted 1,2,4-trioxanes, Bioorg. Med. Chem., 12, 5745-5752, (2004).

. C. Singh, R. Kanchan, U. Sharma, S. K. Puri, New Adamantane-Based Spiro 1,2,4-Trioxanes Orally Effective against Rodent and Simian Malaria, J. Med. Chem., 50, 521-527, (2007).

. A. G. Griesbeck, T. T. El-Idreesy, L.-O. Höinck, J. Lex, R. Brun, Novel spiroanellated 1,2,4-trioxanes with high in vitro antimalarial activities, Bioorg. Med. Chem. Lett., 15, 595-597, (2005).

. C. Singh, H. Malik, S. K. Puri, Orally active amino functionalized antimalarial 1,2,4-trioxanes Bioorg. Med. Chem. Lett., 14, 459-462, (2004).

. C. Singh, H. Malik, S. K. Puri, Orally Active 1,2,4-Trioxanes: Synthesis and Antimalarial Assessment of a New Series of 9-Functionalized 3-(1-Arylvinyl)-1,2,5-trioxaspiro[5.5]undecanes against Multi-Drug-Resistant Plasmodium yoelii nigeriensis in Mice J. Med. Chem., 49, 2794-2803, (2006).

. C. Singh, U. Sharma, G. Saxena, S. K. Puri, Orally active antimalarials: Synthesis and bioevaluation of a new series of steroid-based 1,2,4-trioxanes against multi-drug resistant malaria in mice, Bioorg. Med. Chem. Lett., 17, 4097-4101, (2007).

. J. L. Vennerstrom, S. Arbe-Barnes, R. Brun, S. A. Charman, F. C. K. Chiu, J. Chollet, Y. Dong, A. Dorn, D. Hunziker, H. Matile, K. McIntosh, M. Padmanilayam, J. S. Tomas, C. Scheurer, B. Scorneaux, Y. Tang, H. Urwyler, S. Wittlin, W. N. Charman, Identification of an antimalarial synthetic trioxolane drug development candidate, Nature, 430, 900-904, (2004).

. a) J. L. Vennerstrom, Y. Dong, J. Chollet, H. Matile, Spiro and Dispiro 1,2,4-trioxolane antimalarials. U.S. 6,486,199 (2002); b) J. L. Vennerstrom, Y. Tang, Y. Dong, J. Chollet, H. Matile, M. Padmanilayam, W. N. Charman, Spiro and Dispiro 1,2,4-trioxolane antimalarials, U.S. 6,825,230 (2004).

. Y. Tang, Y. Dong, J. M. Karle, C. A. DiTusa, J. L. Vennerstrom, Synthesis of Tetrasubstituted Ozonides by the Griesbaum Coozonolysis Reaction: Diastereoselectivity and Functional Group Transformations by Post-Ozonolysis Reactions, J. Org. Chem., 69, 6470-6473, (2004).

. J. L. Vennerstrom, Y. Dong, S. A. Charman, S. Wittlin, J. Chollet, X. Wang, K. Sriraghavan, L. Zhou, H. Matile, W. N. Charman, Spiro and Dispiro 1,2,4-trioxolane antimalarials, US 2008/0125441 A1 (2008).

. J. L. Vennerstrom, Y. Dong, J. Chollet, H. Matile, X. Wang, K. Sriraghavan, W. N. Charman, Spiro and Dispiro 1,2,4-trioxolane antimalarials, U.S. 7,371,778 (2008).

. Y. Dong, J. Chollet, H. Matile, S. A. Charman, F. C. K. Chiu, W. N. Charman, B. Scorneaux, H. Urwyler, T. J. Santo, C. Scheurer, C. Snyder, A. Dorn, X. Wang, J. M. Karle, Y. Tang, S. Wittlin, R. Brun, J. L. Vennerstrom, Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting a workable structure-activity relationship using simple prototypes, J. Med. Chem., 48, 4953-4961, (2005).

. Y. Tang, Y. Dong, S. Wittlin, S. A. Charman, J. Chollet, F. C. K. Chiu, W. N. Charman, H. Matile, H. Urwyler, A. Dorn, S. Bajpai, X. Wang, M. Padmanilayam, J. M. Karle, R. Brun, J. L. Vennerstrom, Weak base dispiro-1,2,4-trioxolanes: Potent antimalarial ozonides, Bioorg. Med. Chem. Lett., 17, 1260–1265, (2007).

. Y. Dong, S. Wittlin, K. Sriraghavan, J. Chollet, S. A. Charman, W. N. Charman, C. Scheurer, H. Urwyler, J. S. Tomas, C. Snyder, D. J. Creek, J. Morizzi, M. Koltun, H. Matile, X. Wang, M. Padmanilayam, Y. Tang, A. Dorn, R. Brun, J. L. Vennerstrom, The structure-activity relationship of the antimalarial ozonide arterolane (OZ277), J. Med. Chem. 53, 481–491, (2010).

. Y. Dong, Y. Tang, J. Chollet, H. Matile, S. Wittlin, S. A. Charman, W. N. Charman, J. S. Tomas, C. Scheurer, C. Snyder, B. Scorneaux, S. Bajpai, S. A. Alexander, X. Wang, M. Padmanilayam, S. R. Cheruku, R. Brun, J. L. Vennerstrom, Effect of functional group polarity on the antimalarial activity of spiro and dispiro-1,2,4-trioxolanes, Bioorg. Med. Chem., 14, 6368-6382, (2006).

. M. Padmanilayam, B. Scorneaux, Y. Dong, J. Chollet, H. Matile, S. A. Charman, D. J. Creek, William N. Charman, J. S. Tomas, C. Scheurer, S. Wittlin, R. Brun, J. L. Vennerstrom, Antimalarial activity of N-alkyl amine, carboxamide, sulfonamide, and urea derivatives of a dispiro-1,2,4-trioxolane piperidine, Bioorg. Med. Chem. Lett., 16, 5542-5545, (2006)

. http://www.ranbaxy.com/socialresposbility/mm.aspx (accessed 13 May 2012)

. S. A. Charman, S. Arbe-Barnes, I. C. Bathurst, R. Brun, M. Campbell, W. N. Charman, C. K. Francis, F. C. K. Chiu, J. Chollet, J. C. Craft, D. J. Creek, Y. Dong, H. Matile, M. Maurer, J. Morizzi, T. Nguyen, P. Papastogiannidis, C. Scheurer, M. David, D. M. Shackleford, K. Sriraghavann, L. Stingelin, Y. Tang, H. Urwyler, X. Wang, K. L. White, S. Wittlin, L. Zhou, J. L. Vennerstrom, Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria, Proc. Natl. Acad. Sci. USA, 108, 4400 – 4405, (2011).

. a) T. Ledaal, A Simple Laboratory Method for the Preparation of (Dimeric) Ketone Peroxides, Acta Chem. Scand., 21, 1656-1657, (1967); b) P. R. Story, B. Lee, C. E. Bishop, D. D. Denson, P. Busch, Macrocyclic Synthesis. II. Cyclohexanone Peroxides, J. Org. Chem., 35 3059-3062, (1970); c) J. R. Sanderson, K. Paul, P. R. Story, D. D. Denson, J. A. Alford, Macrocycles. The Synthesis and Thermal Decomposition of Some Disubstituted Dicyclohexylidene Diperoxides Synthesis, 159-161, (1975); d) J. R. Sanderson, A. G. Zeiler, A Simple Synthesis of Dicyclohexylidene Diperoxide and Tricyclohexylidene Triperoxide, Synthesis, 125-127, (1975); e) J. H. Sanderson, A. G. Zeile, R. J. Wilterdink, An Improved Synthesis of Dicyclohexylidene diperoxide, J. Org. Chem., 40, 2239-2241, (1975); f) J. R. Sanderson, R. J. Wilterdink, A. G. Zeler, The preparation of Dicycloalkylidene Diperoxides by a Two-Step Procedure, Synthesis, 479-481, (1976).

. J. L. Vennerstrom, H.-N. Fu, W. Y. Ellis, A. L. Ager, Jr., J. K. Wood, S. L. Andersen, L. Gerena and W. K. Milhous, Dispiro- 1,2,4,5-tetraoxanes: A New Class of Antimalarial Peroxides J. Med. Chem., 35, 3023-3027, (1992).

. C. W. Jefford, A. Jaber, J. Boukouvalas, Efficient preparation of 1,2,4,5-Tetraoxanes from Bis(trimethylsilyl) Peroxide and carbonyl Compounds, Synthesis, 391-393 (1988).

. D. Opsenica, G. Pocsfalvi, Z. Juranić, B. Tinant, J.-P. Declercq, D. E. Kyle, W. K. Milhous, B. A. Šolaja, Cholic Acid Derivatives as 1,2,4,5-Tetraoxane Carriers: Structure and

Antimalarial and Antiproliferative Activity, J. Med. Chem., 43, 3274-3282, (2000)

. N. M. Todorović, M. Stefanović, B. Tinant, J.-P. Declercq, M. T. Makler and B. A. Šolaja, Steroidal geminal Dihydroperoxides and 1,2,4,5-tetraoxanes: Structure Determination and Their Antimalarial Activity, Steroids, 61, 688-696, (1996).

. a) Y. Dong and J. L. Vennerstrom, Dispiro-1,2,4,5-tetraoxanes via Ozonolysis of Cycloalkanone O-Methyl Oximes: A Comparison with the Peroxidation of Cycloalkanones in Acetonitrile-Sulfuric Acid Media, J. Org. Chem., 63, 8582-8585, (1998); b)Y. Dong, H. Matile, J. Chollet, R. Kaminsky, J. K. Wood, J. L. Vennerstrom, Synthesis and Antimalarial Activity of 11 Dispiro-1,2,4,5-tetraoxane Analogues of WR 148999. 7,8,15,16-Tetraoxadispiro[5.2.5.2]hexadecanes Substituted at the 1 and 10 Positions with Unsaturated and Polar Functional Groups, J. Med. Chem., 42, 1477-1480, (1999); c) H.-S. Kim, Y. Shibata, Y. Wataya, K. Tsuchiya, A. Masuyama, M. Nojima, Synthesis and Antimalarial Activity of Cyclic Peroxides, 1,2,4,5,7-Pentoxocanes and 1,2,4,5-Tetroxanes J. Med. Chem., 42, 2604-2609, (1999); d) P. H. Dussault, J. M. Raible, Ozonolysis in the Presence of Lewis Acids: Directed Addition to Carbonyl Oxides, Organic Lett., 2, 3377-3379, (2000).

. K. Žmitek, S. Stavber, M. Zupan, D. Bonnet-Delpon, J. Iskra, Fluorinated alcohol directed formation of dispiro-1,2,4,5-tetraoxanes by hydrogen peroxide under acid conditions Tetrahedron, 62, 1479-1484, (2006).

. Y. Dong, Synthesis and Antimalarial Activity of 1,2,4,5-Tetraoxanes Mini Rev. Med. Chem., 2, 113-123, (2002).

. H. S. Kim, K. Tsuchiya, Y. Shibata, Y. Wataya, Y. Ushigoe, A. Masuyama, M. Nojima, K. J. McCullough, Synthetic methods for unsymmetrically-substituted 1,2,4,5-tetraoxanes and of 1,2,4,5,7-pentoxocanes, J. Chem. Soc., Perkin Trans. 1, 1867-1870, (1999).

. J. Iskra, D. Bonnet-Delponb, J.-P. Bégué, One-pot synthesis of non-symmetric tetraoxanes with the H2O2/MTO/fluorous alcohol system Tetrahedron Lett., 44, 6309-6312, (2003).

. A. O. Terent’ev, A. V. Kutkin, Z. A. Starikova, M. Yu. Antipin, Yu. N. Ogibin, G. I. Nikishin, New Preparation of 1,2,4,5-Tetraoxanes, Synthesis, 2356-2366, (2004).

. a) K. Žmitek, M. Zupan, S. Stavber, J. Iskra, Iodine as a Catalyst for Efficient Conversion of Ketones to gem-Dihydroperoxides by Aqueous Hydrogen Peroxide, Org. Lett., 8, 2491-2494, (2006); b) K. Žmitek, M. Zupan, S. Stavber, J. Iskra, The Effect of Iodine on the Peroxidation of Carbonyl Compounds, J. Org. Chem. 72, 6534-6540, (2007); c) K. Žmitek, M. Zupan, J. Iskra, α-Substituted organic peroxides: synthetic strategies for a biologically important class of gem-dihydroperoxide and perketal derivatives, Org. Biomol. Chem., 5, 3895-3908, (2007); d) B. Das, M. Krishnaiah, B. Veeranjaneyulu, B. Ravikanth, A simple and efficient synthesis of gem-dihydroperoxides from ketones using aqueous hydrogen peroxide and catalytic ceric ammonium nitrate, Tetrahedron Lett., 48, 6286-6289, (2007); e) B. Das, B. Veeranjaneyulu, M. Krishnaiah, P. Balasubramanyam, Synthesis of gem-dihydroperoxides from ketones using silica-supported sodium hydrogen sulfate as a heterogeneous catalyst, J. Mol. Catal. A: Chem., 284, 116-119, (2008).

. a) I. Opsenica, N. Terzić, D. Opsenica, W. K. Milhous, B. Šolaja, 7,8,15,16-tetraoxa-dispiro[5.2.5.2]hexadecane-3-carboxylic acid derivatives and their antimalarial activity, J. Serb. Chem. Soc., 69, 919-922, (2004); b) I. Opsenica, D. Opsenica, M. Jadranin, K. Smith, W. K. Milhous, M. Stratakis, B. Šolaja, On peroxide antimalarials, J. Serb. Chem. Soc., 72, 1181-1190, (2007); c) I. Opsenica, D. Opsenica, K. S. Smith, W. K. Milhous, B. A. Šolaja, Chemical Stability of the Peroxide Bond Enables Diversified Synthesis of Potent Tetraoxane Antimalarials, J. Med. Chem., 51, 2261-2266, (2008).

. R. Amewu, A. V. Stachulski, S. A. Ward, N. G. Berry, P. G. Bray, J. Davies, G. Labat, L. Vivas, P. M. O’Neill, Design and synthesis of orally active dispiro 1,2,4,5-tetraoxanes; synthetic antimalarials with superior activity to artemisinin, Org. Biomol. Chem., 4, 4431-4436, (2006).

. G. L. Ellis, R. Amewu, S. Sabbani, P. A. Stocks, A. Shone, D. Stanford, P. Gibbons, J. Davies, L. Vivas, S. Charnaud, E. Bongard, C. Hall, K. Rimmer, S. Lozanom, M. Jesús, D. Gargallo, S. A. Ward, P. M. O’Neill, Two-Step Synthesis of Achiral Dispiro-1,2,4,5-tetraoxanes with Outstanding Antimalarial Activity, Low Toxicity, and High-Stability Profiles J. Med. Chem., 51, 2170-2177, (2008).

. P. M. O’Neill, R. K. Amewu, G. L. Nixon, F. Bousejr, E. Garah, M. Mungthin, J. Chadwick, A. E. Shone, L. Vivas, H. Lander, V. Barton, S. Muangnoicharoen, P. G. Bray, J. Davies, B. K. Park, S. Wittlin, R. Brun, M. Preschel, K. Zhang, S. A. Ward, Identification of a 1,2,4,5-Tetraoxane Antimalarial Drug-Development Candidate (RKA182) with Superior Properties to the Semisynthetic Artemisinins, Angew. Chem. Int. Ed., 49, 5693 –5697, (2010).

. P. Ghorai, P. H. Dussault, Broadly Applicable Synthesis of 1,2,4,5-Tetraoxanes, Org. Lett., 11, 213-216, (2009).

. K. Žmitek, S. Stavber, M. Zupan, D. Bonnet-Delpon, S. Charneau, P. Grellier, J. Iskra, Synthesis and antimalarial activities of novel 3,3,6,6-tetraalkyl-1,2,4,5-tetraoxanes, Bioorg. Med. Chem., 14, 7790-7795, (2006).

. H. Atheaya, S. I. Khan, R. Mamgaina, D. S. Rawata, Synthesis, thermal stability, antimalarial activity of symmetrically and asymmetrically substituted tetraoxanes, Bioorg. Med. Chem. Lett., 18, 1446-1449, (2008).

. Y. Dong, D. Creek, J. Chollet, H. Matile, S. A. Charman, S. Wittlin, J. K. Wood, J. L. Vennerstrom, Comparative Antimalarial Activities of Six Pairs of 1,2,4,5-Tetraoxanes (Peroxide Dimers) and 1,2,4,5,7,8-Hexaoxonanes (Peroxide Trimers), Antimicrob. Agents Ch., 51, 3033-3035, (2007).

. D. Opsenica, G. Angelovski, G. Pocsfalvi, Z. Juranić, Ž. Žižak, D. Kyle, W. K. Milhous, B. A. Šolaja, Antimalarial and Antiproliferative Evaluation of Bis-Steroidal Tetraoxanes, Bioorg. Med. Chem. 11, 2761-2768, (2003).

. B. A. Šolaja, N. Terzić, G. Pocsfalvi, L. Gerena, B. Tinant, D. Opsenica, W. K. Milhous, Mixed Steroidal 1,2,4,5-Tetraoxanes: Antimalarial and Antimycobacterial Activity J. Med. Chem. 45, 3331-3336, (2002).

. N. Terzić, D. Opsenica, D. Milić, B. Tinant, K. S. Smith, W. K. Milhous, B. A. Šolaja, Deoxycholic Acid-Derived Tetraoxane Antimalarials and Antiproliferatives, J. Med. Chem., 50, 5118-5127, (2007).

. D. Opsenica, D. E. Kyle, W. K. Milhous, B. A. Šolaja, Antimalarial, antimycobacterial and antiproliferative activity of phenyl substituted mixed tetraoxanes, J. Serb. Chem. Soc., 68, 291-302, (2003).

. I. Opsenica, N. Terzić, D. Opsenica, G. Angelovski, M. Lehnig, P. Eilbracht, B. Tinant, Z. Juranić, K. S. Smith, Y. S. Yang, D. S. Diaz, P. L. Smith, W. K. Milhous, D. Đoković, B. A. Šolaja, Tetraoxane Antimalarials and Their Reaction with Fe(II), J. Med. Chem., 49, 3790-3799, (2006).

. D. M. Opsenica, N. Terzić, P. L. Smith, Y. Yang, L. Anova, K. S. Smith, B. A. Šolaja, Mixed tetraoxanes containing the acetone subunit as antimalarials, Bioorg. Med. Chem. 16, 7039-7045, (2008).

. C. W. Jefford, J.-C. Rossier, W. K.Milhous, The Structure and Antimalarial Activity of Some 1,2,4-Trioxanes, 1,2,4,5-Tetraoxanes and Bicyclic Endoperoxide. Implication for the Mode of Action, Heterocycles, 52, 1345-1352, (2000).

. D. Opsenica, Z. Juranić, B. A. Šolaja, unpublished results. In brief, the whole blood from a healthy person, with K EDTA added as an anticoagulant, was incubated for 48 h at 37 oC with test compound 6 within concentration range of 60 M - 6 nM. No increase of hemoglobin level in plasma was detected, as compared to blank probe. Blood diluted with physiological solution was used as blank, while blood diluted with de-ionized water was used as positive control probe.

. D. Opsenica, G. Pocsfalvi, W. K. Milhous and B. A. Šolaja, Antimalarial peroxides: the first intramolecular 1,2,4,5-tetraoxane, J. Serb. Chem. Soc., 67, 465-471, (2002).

. A. O. Terent’ev, D. A. Borisov, V. V. Chernyshev and G. I. Nikishin, Facile and Selective Procedure for the Synthesis of Bridged 1,2,4,5-Tetraoxanes; Strong Acids As Cosolvents and Catalysts for Addition of Hydrogen Peroxide to Diketones, J. Org. Chem., 74, 3335–3340, (2009).

. O. Dechey-Cabaret, F. Benoit-Vical, A. Robert, B. Meunier, Preparation and Antimalarial Activities of “Trioxaquines”, New Modular Molecules with a Trioxane Skeleton Linked to a 4-Aminoquinolines, ChemBioChem, 281-283, (2000).

. L. K. Basco, O. Dechy-Cabaret, M. Ndounga, F. S. Meche, A. Robert, B. Meunier, In Vitro Activities of DU-1102, a New Trioxaquine Derivative, against Plasmodium falciparum Isolates, Antimicrob. Agents Chemother., 45 1886-1888, (2001).

. O. Dechy-Cabaret, F. Benoit-Vical, C. Loup, A. Robert, H. Gornitzka, A. Bonhoure, H. Vial, J.-F. Magnaval, J.-P. Séguéla, B. Meunier, Synthesis and Antimalarial Activity of Trioxaquine Derivatives, Chem. Eur. J., 10, 1625-1636, (2004).

. F. Coslédan, L. Fraisse, A. Pellet, F. Guillou, B. Mordmüller, P. G. Kremsner, A. Moreno, D. Mazier, J.-P. Maffrand, B. Meunier, Selection of a trioxaquine as an antimalarial drug candidate, P. Natl. Acad. Sci. USA, 105, 17579-17584, (2008).

. O. Dechy-Cabaret, F. Benoit-Vical, A. Robert, J.-F. Magnaval, J.-P. Séguéla, B. Meunier, Synthesis and biological evaluation of a new trioxaquine containing a trioxane moiety obtained by halogenocyclisation of a hemiperoxyacetal, C. R. Chim., 6, 153-160, (2003).

. C. Singh, H. Malik, S. K. Puri, Synthesis and antimalarial activity of a new series of trioxaquines, Bioorg. Med. Chem. 12, 1177-1182, (2004).

. B. Meunier, Hybrid Molecules with a Dual Mode of Action: Dream or Reality? Acc. Chem. Res., 41, 69-77, (2008).

. J. L. Vennerstrom, Y. Dong, J. Chollet, H. Matile, M. Padmanilayam, Y. Tang, W. N. Charman, Spiro and Dispiro 1,2,4-Trioxolane Antimalarials, US 20040039008 A1 (2004).

. J. J. Walsh, D. Coughlan, N. Heneghan, C. Gaynora, A. Bellb, A novel artemisinin–quinine hybrid with potent antimalarial activity, Bioorg. Med. Chem. Lett., 17, 3599-3602, (2007).

. T. S. Skinner, L. S. Manning, W. A. Johnston, T. M. E. Davis, In Vitro Stage-specific Sensitivity of Plasmodium falciparum to Quinine and Artemisinin Drugs, Int. J. Parasitology, 26, 519-525, (1996).

. I. Opsenica, D. Opsenica, C. A. Lanteri, L. Anova, W. K. Milhous, K. S. Smith, B. A. Šolaja, New Chimeric Antimalarials with 4-Aminoquinoline Moiety Linked to a Tetraoxane Skeleton, J. Med. Chem., 51, 6216-6219, (2008).

. J. L. Vennerstrom, A. L. Ager, S. L. Andersen, J. M. Grace, V. Wongpanich, C. K. Angerhofer, J. K. Hu, D. L. Wesche, Assessment of the Antimalarial Potential of tetraoxane WR148999, Am. J. Trop. Med. Hyg., 62, 573-578, (2000).

. S. Gupta, M. M. Thapar, S. T. Mariga, W. H. Wernsdorfer, A. Björkman, Plasmodium falciparum: in Vitro Interactions of Artemisinin with Amodiaquine, Pyronaridine, and Chloroquine, Exp. Parasitol., 100, 28–35, (2002).

. M. Ashton, T. N. Hai, N. D. Sy, D. X. Huong, N. V. Huong, N. T. Niêu, L. D. Công, Artemisinin Pharmacokinetics Is Time-Dependent During Repeated Oral Administration In Healthy Male Adults. Drug Metab. Dispos., 26, 25-27, (1998).

. W. K. Milhous, L. Gerena, D. Opsenica, B. A. Šolaja, unpublished results.

. L. Zhou, A. Alker, A. Ruf, X. Wang, F. C. K. Chiu, J. Morizzi, S. A. Charman, W. N. Charman, C. Scheurer, S. Wittlin, Y. Dong, D. Hunziker, J. L. Vennerstrom, Characterization of the two major CYP450 metabolites of ozonide (1,2,4-trioxolane) OZ277, Bioorg. Med. Chem. Lett., 18, 1555-1558, (2008).

. a) G. H. Posner and C. H. Oh, A Regiospecifically Oxygen-18 Labeled 1,2,4-Trioxane: A Simple Chemical Model System To Probe the Mechanism(s) for the Antimalarial Activity of Artemisinin (Qinghaosu), J. Am. Chem. Soc., 114, 8328-8329, (1992); b) G. H. Posner, S. B. Park, L. Gonzalez, D. Wang, J. N. Cumming, D. Klinedinst, T. A. Shapiro, M. D. Bachi, Evidence for the Importance of High-Valent Fe=O and of a Diketone in the Molecular Mechanism of Action of Antimalarial Trioxane Analogs of Artemisinin, J. Am. Chem. Soc., 118 3537-3538, (1996).

. a) C. W. Jefford, F. Favarger, M. G. H. Vicente, Y. Jacquier, The Decomposition of Cis-Fused Cyclopenteno-1,2,4-trioxanes Induced by Ferrous Salts and Some Oxophilic Reagents, Helv. Chim. Acta, 78, 452-458, (1995); b) C. W. Jefford, M. G. H. Vicente, Y. Jacquier, F. Favarger, J. Mareda, P. Millason-Schmidt, G. Brunner and U. Burger, The Deoxygenation and Isomerization of Artemisinin and Artemether and Their Relevance to Antimalarial Action, Helv. Chim. Acta., 79, 1475-1487, (1996); c) C. W. Jefford, U. Burger, P. Millasson-Schmidt, G. Bernardinelli, B. L. Robinson and W. Peters, Epiartemisinin, a remarkably Poor Antimalarial: Implication for the Mode of Action, Helv. Chim. Acta, 83, 1239-1246, (2000).

. a) R. K. Haynes and S. C. Vonwiller, The Behaviour of Qinghaosu (Artemisinin) in the Presence of Heme Iron(II) and (III), Tetrahedron Lett., 37, 253-256, (1996); b) R. K. Hynes and S. C. Vonwiller, The Behaviour of Qinghaosu (Artemisinin) in the Presence of Non-Heme Iron(II) and (III), Tetrahedron Lett., 37, 257-260, (1996).

. a) A. Robert, B. Meunier, Characterization of the First Covalent Adduct between Artemisinin and a Heme Model, J. Am. Chem. Soc., 119 5968-5969, (1997); b) A. Robert, B. Meunier, Alkylating Properties of Antimalarial Artemisinin Derivatives and Synthetic Trioxanes when Activated by Reduced heme Model, Chem. Eur. J., 4, 1287-1296 (1998); c) J. A. Robert, J. Cazelles, B. Meunier, Characterization of the Alkylation Product of Heme by the Antimalarial Drug Artemisinin, Angew. Chem. Int. Ed., 40 1954-1957, (2001); d) J. Cazelles, J. A. Robert, B. Meunier, Alkylating Capacity and Reaction Products of Antimalarial Trioxanes after Activation by a Heme Model J. Org. Chem., 67, 609-619, (2002).

. a) W.-M. Wu, Z.-J. Yao, Y.-L. Wu, K. Jiang, Y.-F. Wang, H.-B. Chen, F. Shan, Y. Li, Ferrous ion induced cleavage of the peroxy bond in quinghaosu and its derivatives and the DNA damage associated with this process, Chem. Commun., 2213-2214, (1996); b) W.-M. Wu, Y. Wu, Y.-L. Wu, Z.-J. Yao, C.-M. Zhou, Y. Li, F. Shan, Unified Mechanistic Framework for the Fe(II)-Induced Cleavage of Qinghaosu and Derivatives/Analogues. The First Spin-Trapping Evidence for the Previously Postulated Secondary C-4 radical, J. Am. Chem. Soc., 120, 3316-3325, (1998); c) Y. Wu, Z.-Y. Yue, Y.-L. Wu, Interaction of Qinghaosu (Artemisinin) with Cystein Sulfhydryl Mediated by Traces of Non-Heme Iron, Angew.Chem. Int. Ed., 38, 2580-2582, (1999); d) D.-Y. Wang, Y.-L. Wu, A possible antimalarial action mode qinghaosu (artemisinin) series compounds. Alkylation of reduced glutathione by C-centered primary radicals produced from antimalarial compound quinghaosu and 12-(2,4-dimethoxyphenyl)-12-deoxoqinghaosu, Chem. Commun., 2193-2194, (2000).

. a) G. H. Posner, J. N. Cumming, P. Ploypradith, C.-H. Oh, Evidence for Fe(IV)=O in the Molecular Mechanism of Action of the Trioxane Antimalarial Artemisinin, J. Am. Chem., 117, 5885-5886, (1995); b) T. G. Traylor, A. R. Miksztal, Mechanisms of hemin-catalyzed epoxidations: electron transfer from alkenes, J. Am. Chem. Soc., 109, 2770-2774, (1987).

. a) S. Kapetanaki, C. Varotsis, Ferryl-oxo heme intermediate in the antimalarial mode of action of artemisinin FEBS Lett., 474, 238-241, (2000); b) S. Kapetanaki, C. Varotsis, Fourier Transform Infrared Investigation of Non-Heme Fe(III) and Fe(II) Decompostion of Artemisinin and of a Simplified Trioxane Alcohol, J. Med. Chem. 44 3150-3156, (2001).

. S. A.-L. Laurent, C. Loup, S. Mourgues, A. Robert, B. Meunier, Heme Alkylation by Artesunic Acid and Trioxaquine DU1301, Two Antimalarial Trioxanes, ChemBioChem, 6, 653-658, (2005).

. W. Asawamahasakda, I. Ittarat, Y.-M. Pu, H. Ziffer and S. R. Meshnick, Reaction of Antimalarial Endoperoxides with Specific Parasite proteins, Antimicrobial Agents and Chemotherapy, 38, 1854-1858, (1993).

. J. Bhisutthibhan, X.-Q. Pan, P. A. Hossler, D. J. Walker, C. A. Yowell, J. Carlton, J. B. Dame and S. R. Meshnick, The Plasmodium falciparum Translationally Controlled Tumor protein Homolog and its reaction with the Antimalarial Drug Artemisinin J. Biol. Chem., 273, 16192-16198, (1998).

. S. R. Meshnick, Artemisinin: mechanisms of action, resistance and toxicity, Int. J. Parasitology, 32, 1655-1660, (2002).

. U. Eckstein-Ludwig, R. J. Webb, I. D. A. A. Van Goethem, J. M. East, A. G. Lee, M. Kimura, P. M. O’Neill, P. G. Bray, S. A. Ward, S. Krishna, Artemisinins target the SERCA of Plasmodium falciparum, Nature, 424, 957-959, (2003).

. A. V. Pamdey, B. L. Tekwani, R. L. Singh, V. S. Chauhan, Artemisinin, an Endoperoxide Antimalarial, Disrupts the Hemoglobin Catabolism and Heme Detoxification Systems in Malarial Parasite, J. Bio. Chemistry, 274, 19383-19388, (1999).

. a) A. Coppi, C. Pinzon-Ortiz, C. Hutter, P. Sinnis, The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion, J. Exp. Med., 201, 27-33, (2005); b) F. Sarabia, A. Sánchez-Ruiz, S. Chammaa, Stereoselective synthesis of E-64 and related cysteine proteases inhibitors from 2,3-epoxyamides Bioorg. Med. Chem., 13, 1691-1705, (2005).

. L. Messori, C. Gabbiani, A. Casini, M. Siragusa, F. F. Vincieri, A. R. Bilia, The reaction of artemisinins with hemoglobin: A unified picture, Bioorg. Med. Chem., 14, 2972-2977, (2006).

. R. K. Hynes, D. Monti, D. Taramelli, N. Basilico, S. Parapini, P. Olliaro, Artemisinin Antimalarials Do Not Inhibit Hemozoin Formation, Antimicrobial Agents and Chemoterapy, 47, 1175, (2003).

. R. K. Haynes, W. C. Chan, C.-M. Lung, A.-C. Uhlemann, U. Eckstein, D. Taramelli, S. Parapini, D. Monti, S. Krishna, The Fe2+-mediated decomposition, pfatp6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of c-centered radicals as bioactive intermediates ChemMedChem, 2, 1480-1497, (2007).

. F. Bousejra-El Garah, B. Meunier, A. Robert, The Antimalarial Artemisone Is an Efficient Heme Alkylating Agent Eur. J. Inorg. Chem., 2133-2135, (2008).

. P. A. Stocks, P. G. Bray, V. E. Barton, M. Al-Helal, M. Jones, N. C. Araujo, P. Gibbons, S. A. Ward, R. H. Hughes, G. A. Biagini, J. Davies, R. Amewu, A. E. Mercer, G. Ellis, P. M. O’Neill, Evidence for a Common Non-Heme Chelatable-Iron-Dependent Activation Mechanism for Semisynthetic and Synthetic Endoperoxide Antimalarial Drugs, Angew. Chem. Int. Ed., 46, 6278-6283, (2007).

. S. Sabbani, P. A. Stocks, G. L. Ellis, J. Davies, E. Hedenstrom, S. A. Ward, P. M. O’Neill, Piperidine dispiro-1,2,4-trioxane analogues, Bioorg. Med. Chem. Lett.,18, 5804-5808, (2008).

. A.-C. Uhlemann, S. Wittlin, H. Matile, L. Y. Bustamante, S. Krishna, Mechanism of Antimalarial Action of the Synthetic Trioxolane RBX11160 (OZ277), Antimicrob. Agents Chemother., 51 667-672, (2007).

. S. Parapini, N. Basilico, M. Mondania, P. Olliaroc, D. Taramelli, D. Montie, Evidence that haem iron in the malaria parasite is not needed for the antimalarial effects of artemisinin. FEBS Lett. 575, 91–94, (2004).

. P. Coghi P, N. Basilico, D. Taramelli, W. C. Chan, R. K. Haynes, D. Monti, Interaction of artemisinins with oxyhemoglobin Hb–FeII, Hb–FeII, carboxyHb–FeII, heme–FeII, and carboxyheme FeII: significance for mode of action and implications for therapy of cerebral malaria. ChemMedChem, 4, 2045 – 2053, (2009).

. A. K. Bhattacharjee, K. A. Carvalho, D. Opsenica, B. A. Šolaja, Structure-activity relationship study of steroidal 1,2,4,5-tetraoxane animalarials using computational procedures, J. Serb. Chem. Soc., 70, 329-345, (2005).

. F. B.-E. Garah, M. H.-L. Wong, R. K. Amewu, S. Muangnoicharoen, J. L. Maggs, J.-L. Stigliani, B. K. Park, J. Chadwick, S. A. Ward, P. M. O’Neill, Comparison of the Reactivity of Antimalarial 1,2,4,5-Tetraoxanes with 1,2,4-Trioxolanes in the Presence of Ferrous Iron Salts, Heme, and Ferrous Iron Salts/Phosphatidylcholine, J. Med. Chem., 54, 6443–6455, (2011).

. N. Kumura, H. Furukawa, A. N. Onyango, M. Izumi, S. Nakajima, H. Ito, T. Hatano, H.-S. Kim, Y. Wataya, N. Baba, Different behavior of artemisinin and tetraoxane in the oxidative degradation of phospholipid, Chem. Phys. Lipids, 160, 114–120, (2009).

. Rosenthal MD PJ (eds) (2001) Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery. Humana Press, Totowa, New Jersy

. M. Akoachere, K. Buchholz, E. Fischer, J. Burhenne, W. E. Haefeli, R. H. Schirmer, K. Becker, In Vitro Assessment of Methylene Blue on Chloroquine-Sensitive and -Resistant Plasmodium falciparum Strains Reveals Synergistic Action with Artemisinins, Antimicrob. Agents Chemother. 49, 4592–4597, (2005).

. K. Buchholz, R. H. Schirmer, J. K. Eubel, M. B. Akoachere, T. Dandekar, K. Becker, S. Gromer, Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum. Antimicrob., Agents Chemother., 52, 183–191, (2008).

. R. K. Haynes, W. C. Chan, H. N. Wong, K. Y. Li, W. K. Wu, K. M. Fan, H. H. Y. Sung, I. D. Williams, D. Prosperi, S. Melato, P. Coghi, D. Monti, Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins: Relationship with Flavoenzyme Function and Antimalarial Mechanism of Action, ChemMedChem., 5, 1282-1299, (2010).

. R. K. Haynes, K. W. Cheu, M. M. K. Tang, M. J. Chen, Z. H. Guo, P. Coghi, D. Monti, Reactions of Antimalarial Peroxides with Each of Leucomethylene Blue and Dihydroflavins: Flavin Reductase and the Cofactor Model Exemplified, ChemMedChem., 6, 279-291, (2011).

Downloads

Published

2012-12-20

How to Cite

Opsenica, D. M., & Šolaja, B. A. (2012). Artemisinins and synthetic peroxides as highly efficient antimalarials. Macedonian Journal of Chemistry and Chemical Engineering, 31(2), 137–182. https://doi.org/10.20450/mjcce.2012.50

Issue

Section

Organic Chemistry