Crystal structure of the cobalt human insulin derivative
DOI:
https://doi.org/10.20450/mjcce.2015.653Keywords:
insulin derivative, cobalt, X-ray structureAbstract
The structure of the human cobalt insulin derivative at 1.73 Å resolution is described. Single were prepared by the hanging drop vapour diffusion crystallisation method using Zn-free insulin and cobalt(II) acetate.
The crystal structure was determined by the single crystal X-ray diffraction method. The investigated insulin derivative exhibits the T6 form of insulin and crystallizes in the trigonal system in space group R3, with the unit cell parameters a = b = 81.43 Å and c = 33.75 Å. The two cobalt atoms per insulin hexamer and are octahedrally coordinated by three symmetry-related Nε2 atoms of three HisB10/HisD10 and three oxygen atoms from three water molecules.References
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank, Nucl. Acids Res., 28, 235-242 (2000). www.rcsb.org
F. G. Banting, C. H. Best, The internal secretion of the pancreas, J. Lab. Clin. Med .7, 251-266 (1922).
F. Sanger, E. O. P. Thompson, The amino-acid sequence in the glycyl chain of insulin, The Amino-acid sequence in the glycyl chain of insulin, Biochem. J. 53, 353-366 (1953).
N. C. Kaarsholm, H. C. Ko, M. F. Dunn, Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin, Biochemistry 28, 4427-4435 (1989).
M. J. Adams, T. L. Blundell, E. J. Dodson, G. G. Dodson, M. Vijayan, E. N. Baker, M. M. Harding, D. C. Hodgkin, B. Rimmer, S. Sheat, Structure of rhombohedral 2 zinc insulin crystals, Nature 224, 491-495 (1969).
G. D. Smith, W. A. Pangborn R. H. Blessing, The structure of T6 human insulin at 1.0 Å resolution, Acta Crystallogr. D59, 474-482 (2003).
G. Bentley, E. Dodson, G. Dodson, D. Hodgkin, D. Mercola, Structure of insulin in 4-zinc insulin, Nature 261, 166-168 (1976).
G. D. Smith, D. C. Swenson, E. J. Dodson, G. G. Dodson, C. D. Reynolds, Structural stability in the 4-zinc human insulin hexamer, Proc. Nat. Acad. Sci. USA, 81, 7093-7097 (1984).
E. Ciszak, G. D. Smith, Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer, Biochemistry 33, 1512-1517 (1994).
J. W. Whittingham, S. Chaudhuri, E. J. Dodson, P. C. E. Moody, G. G. Dodson, X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben and phenol, Biochemistry 34, 15553-15563 (1995).
G. D. Smith, E. Ciszak, L. A. Magrum, W. A. Pangborn, R. H. Blessing, R6 hexameric insulin complexed with m-cresol or resorcinol, Acta Crystallogr. D56, 1541-1548 (2000).
C. P. Hill, Z. Dauter, E. J. Dodson, G. G. Dodson, M. F. Dunn, X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer, Biochemistry 30, 917-924 (1991).
B. Prugovečki, Coordination of selected essential metal ions in insulin, PhD Thesis, In Croatian, Abstract in English, University of Zagreb, 2005
J. Nicholson, L. Perkins, F. Körber, The high resolution structure of a hexameric T6 cobalt insulin: A possible pathway for the T to R transition, Recent Res. Dev. Mol. Biol. 3, 1-16 (2006).
B. Prugovečki, E. J. Dodson, G. G. Dodson, D. Matković-Čaligović, Structure of the T6 human nickel insulin derivative at 1.35 Å resolution, Croat. Chem. Acta 82(2) (2009), 433-438
R. Sreekanth, V. Pattabhi, S. S. Rajan, Metal induced structural changes observed in hexameric insulin, Int. J. Biol. Macromol. 44, 29-36 (2009).
N. R. S. Krishna, V. Pattabhi, S. S. Rajan, Metal induced conformational changes in human insulin: Crystal structures of Sr2+, Ni2+ and Cu2+ complexes of human insulin, Protein & Peptide Letters 18, 457-466 (2011).
B. Prugovečki, I. Pulić, M. Toth, D. Matković-Čaligović, High resolution structure of the manganese derivative of insulin, Croat. Chem. Acta 85(4), 435-439 (2012).
S. M. Cutfield, D. Phil. Thesis, University of Oxford, 1975.
B. Xiao, D. Phil. Thesis, University of York, 1990.
A. G. W. Leslie, Recent changes to the MOSFLM package for processing film and image plate data, Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography, No. 26, 1992, pp. 27-33.
M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Overview of the CCP4 suite and current developments, Acta. Crystallogr., D67, 235-242 (2011).
G. N. Murshudov, A. A.Vagin, E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr., D53, 240-255 (1997).
P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot, Acta Crystallogr., D66, 486-501 (2010).
G. Langer, S. X. Cohen, V. S. Lamzin, A. Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/ wARP version 7. Nature Protocols., 3, 1171-1179 (2008).
F. H. Allen, The Cambridge Structural Database: a quarter of a million crystal structures and rising, Acta Crystallogr., B58, 380-388 (2002).
J.-J. Nie, J.-H. Li, D.-J. Xu, Hexakis(1H-imidazole-ΚN3)cobalt(II)triaquatris(1H-imidazole- ΚN3)cobalt(II)bis(naphthalene-1,4-dicarboxylate), Acta Crystallogr., E65, m822–m823 (2009).
P. Liu, Z. Liu, Triaqua-tris(1H-imidazole)-cobalt(II) 2,6-naphthalenedisulfonate monohydrate, Z. Kristallogr. NCS, 223 498-500 (2008).
T. K. Yazıcılar, E. Y. Gürkan, I. Uçar, C. Kazak, Synthesis, characterization, spectroscopic, and thermal studies of imidazole complexes of metal benzenesulfonates. Crystal structure of [M(imH)3(H2O)3]•(BS)2 [M=Ni(II) and Co(II), Transition Met. Chem. 34 669-676 (2009).
W. Kabsch, Acta Crystallogr., A solution for the best rotation to relate two sets of vectors, A32 922–92 (1976).
G. D. Smith, W. A. Pangborn R. H. Blessing, Phase changes in T3R3f human insulin: temperature or pressure induced? Acta Crystallogr. D57,1091-1100 (2001).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.