Volcanic periodicity plots along transition series, hypo-hyper-d-d-interelectronic correlations and electrocatalysis for hydrogen electrode reactions

Authors

  • Jelena M. Jakšić ICEHT/FORTH, 26500 Patras
  • Velimir R. Radmilović National Center for Electron Microscopy, LBL, University of California, Berkeley, CA 94720
  • Nedeljko V. Krstajić Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade
  • Časlav M. Lacnjevać Faculty of Agriculture, University of Belgrade, 11080 Belgrade
  • Milan M. Jakšić ICEHT/FORTH, 26500 Patras

DOI:

https://doi.org/10.20450/mjcce.2011.66

Keywords:

electrocatalysis, hydrogen evolution (HER), H-adatoms, hypo-hyper-d-d-electronic correlations, intermetallic phase, volcano curve, electrocatalytic synergism, d-d-interactive catalyst grafting, SMSI (Strong Metal-Support Interaction)

Abstract

Volcano plots of various physical and chemical properties along transition series reveal the periodicity features of elements based on the d-d-electronic correlations, with rather similar equivalent shape, and consequently, when plotted into one another, yield various relevant linear interdependences. As the consequence, the d-band has been inferred and confirmed for the bonding, adsorptive and catalytic orbital. Such state of evidence leads to the conclusion that on the same way every hypo-hyper-d-d-interelectronic phase diagram behaves similar (local) volcano dependence as the part of the Periodic Table between two initial periods of interacting ingredients. In other words, their intermetallic phases of the same average d-electronic configuration replace the (‘missing’) elements in their energy state and behaviour in between, and consequently, have been used to assess the synergistically active electrocatalysts for the hydrogen electrode reactions from the peak values of the corresponding volcano plots. In the same context, the general hypsometric type of kinetic relations, including the Boltzmann-Maxwell distribution law that implies the exponential energy dependence, brings various energy states in mutual linear interdependence with the logarithm of the reaction rates.

References

J. Friedel, C. M. Sayers, On the Role of d-d- Electron Correlations in the Cohesion and Ferromagnetism of Transition Metals, J. Physique, 38 (1977), 697–705.

J. Friedel, Transition Metals. Electronic Structure of the d-Band. Its Role in the Crystalline and Magnetic Structures, in Physics of Metals, Electrons, J. M. Ziman, Ed., Cambridge Univ. Press, 1 (l969), 340–408.

J. Friedel, Interatomic Correlations of Valence Electrons in Metals, Physica B, 109–110 (1982), 1421–1435.

L. Brewer, Bonding and Structures of Transition Metals, Science, 161 (1968), 115–122.

L. Brewer, Thermodynamic Stability and Bond Character in Relation to Electronic Structure and Crystal Structure,tin Electronic Structure and Alloy Chemistry of Transition Elements, P. A. Beck, Ed., Interscience, New York, 1965, 221–235.

L. Brewer, The Role and Significance of Empirical and Semiempirical Correlations, in Structure and Bonding in Crystals, M. O’Keffe and A. Navrotski, Eds., Academic Press, New York, 1 (1981), 155–174.

B. C. Allen, The Surface Tension of Liquid Transition Metals at Their Melting Points, Trans. Met. Soc. AIME, 227 (1963), 1175–1183.

K. A. Gschneidner, Physical Properties and Interrelations of Metallic and Semimetallic Elements, in Solid State Physics, Advances in Research and Applications, F. Seitz and D. Turnbull, Eds., Academic Press, New York, 16 (1964), 275–427.

M. M. Jaksic, Volcano Plots along the Periodic Table, Their Causes and Consequences on Electrocatalysis for Hydrogen Electrode Reactions, Journal of New Materials in Electrochemical Systems, J. New. Mat. Electrochem. Systems, 3 (2000), 153– 168.

M. Methfessel, D. Hennig, M. Schefler, Trends of the Surface Relaxations, Surface Energies, and Work Functions of the 4d Transition Metals, Phys. Rev. B, 46 (1992), 4816–4829.

H. Kita, Periodic Variation of Exchange Current Density of Hydrogen Electrode Reaction with Atomic Number and Reaction Mechanism, J. Electrochem. Soc., 113 (1966), 1095–1111; H. Kita, Kinetics and Electrocatalysis. In Encyclopedia of Electrochemistry, A. J. Bard, Ed., Marcel Dekker, New York, 9a (1982), 413–556.

M. H. Miles, Evaluation of Electrocatalysts for Water Electrolysis in Alkaline Solutions, J. Electroanal. Chem., 60 (1975), 89–96.

T. A. Pecoraro, R. R. Chianelli, Hydrodesulfurization Catalysis by Transition Metal Sulfides, J. Catalysis, 67 (1981), 430–445.

S. Trasatti, The Work Function in Electrochemistry, in Advances in Electrochemistry and Electrochemical Engineering, C. W. Tobias and H. Goerischer, Eds., Interscience, New York, 10 (1977), 213–321.

M. M. Jaksic, Advances in Electrocatalysis for Hydrogen Evolution in the Light of the Brewer- Engel Valence-Bond Theory, J. Mol. Catalysis, 38 (1986), 161–202.

M. M. Jaksic, Hypo-Hyper-d-Electronic Interactive Nature of Synergism in Catalysis and Electrocatalysis for Hydrogen Reactions’, Electrochim. Acta, 45, (2000), 4085–4099.

S. G. Neophytides, S. Zafeiratos, G. D. Papakonstantinou, J. M. Jaksic, F. E. Paloukis, M. M. Jaksic, Extended Brewer Hypo-Hyper-d-Interionic Bonding Theory, I. Theoretical Considerations and Examples for Its Experimental Confirmation, Int. J. Hydrogen Energy, 30 (2005) 131–147; II. Strong Metal-Support Interaction Grafting of Composite Electrocatalysts, Int. J. Hydrogen Energy, 30 (2005), 393–410.

S. G. Neophytides, S. H. Zafeiratos, M. M. Jaksic, Selective Interactive Grafting of Composite Bifunctional Electrocatalysts for Simultaneous Anodic Hydrogen and CO Oxidation, I. Theoretical Concepts and Embodiment of Novel Type Composite Catalysts, J. Electrochem. Soc., 150 (2003), E512–E526.

M. M. Jaksic, Lj. Vracar, S. G. Neophytides, S. Zafeiratos, G. Papakonstantinou, N. V. Krstajic, M. M. Jaksic, Structural Effects on Kinetic Properties for Hydrogen Electrode Reactions and CO Tolerance along Mo-Pt Phase Diagram, Surf. Sci., 598 (2005), 156–173.

J. M. Jaksic, N. V. Krstajic, Lj. M. Vracar, S. G. Neophytides, D. Labou, P. Falaras, M. M. Jaksic, Spillover of Primary Oxides as a Dynamic Catalytic Effect of Interactive Hypo-d-Oxide Supports, Electrochimica Acta, 53 (2007), 349–361.

W. Hume-Rothery, The Structure of Metals and Alloys, Institute of Metals, London, 1936; W. Hume-Rothery, Electrons, Atoms, Metals and Alloys, Dover, London, 1963.

P. Sabatier, La Catalyse en Chimie Organique, Librairie Polytechnique, Paris, 1913.

P. Sabatier, Hydrogénations et Déshydrogénations par Catalyse, Ber. Deutsch. Chem. Soc., 44 (1911), 1984–2001.

J. M. Jaksic, D. Labou, G. D. Papakonstantinou, A. Siokou, M. M. Jaksic, Novel Spillover Interrelating Reversible Electrocatalysts for Oxygen and Hydrogen Electrode Reactions, J. Phys. Chem. C, 114 (2010), 18298–18312.

C. M. Lacnjevac, M. M. Jaksic, Synergetic Electrocatalytic Effect of d-Metals on the Hydrogen Evolution Reaction in Industrially Important Electrochemical Processes, J. Res. Inst. Catalysis, Hokkaido Univ., 31 (1983), 7–33.

M. Mavrikakis, P. Stoltze, J. K. Norskov, Making Gold Less Noble, Catal. Lett., 64 (2000), 101–106.

G. Greeley, M. Mavrikakis, Alloy Catalysts Designed from First Principles, Nature Mater., 3 (2004), 810–815.

E. Christoffersen, P. Liu, A. Ruban, H. L. Skriver, J. K. Norskov, Anode Materials for Low-Temperature Fuel Cells: A Density Functional Theory Study, J. Catalysis, 199 (2001), 123–131.

B. Hammar, J. K. Norskov, Theoretical Surface Science and Catalysis – Calculations and Concepts, Adv. Catal., 45 (2000), 71–129. B. Hammer, J. K. Norskov, Why Gold is the Noblest of all the Metals, Nature, 376 (1995), 238– 240.

S. Trasatti, Work Function, Electronegativity, and Electrochemical Behaviour of Metals: II. Potentials of Zero Charge and “Electrochemical” Work Functions, J. Electroanal. Chem., 33 (1971), 351– 378.

S. Trasatti, Development of the Work Function Approach to the Underpotential Deposition of Metals –Application to the Hydrogen Evolution Reaction, Z. Phys. Chem. N.F., 98 (1975), 75–94.

S. G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda, D. Tsiplakides, Electrochemical Activation od Catalysts: promotion, Electrochemical Promotion and Metal-Support Interactions, Kluwer Academic, New York, 2001, and references therein.

Df. Tsiplakides, C. G. Vayenas, Electrode Work Function and Absolute Potential Scale in Solid- State Electrochemistry, J. Electrochem. Soc., 148 (2001), E189–E202.

D. Tsiplakides, D. Archonta, C. G. Vayenas, Absolute Potential Measurements in Solid and Aqueous Electrochemistry Using Two Kelvin Probes and Their Implications for the Electrochemical Promotion of Catalysis, Top. Catalysis, 44 (2007), 469–479.

J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc., 152 (2005), J23– J26.

E. Santos, W. Schmickler, Electrocatalysis of Hydrogen Oxidation – Theoretical Foundations, Angew. Chem. Int. Ed., 46 (2007), 8262–8265.

M. M. Jaksic, J. M. Jaksic, Fermi Dynamics and Some Structural Bonding Aspects of Electrocatalysis for Hydrogen Evolution, Electrochim. Acta, 39 (1994), 1695–1714.

. M. Jaksic, N. V. Krstajic, B. N. Grgur, M. M. Jaksic, Hydridic and Electrocatalytic Properties of Hypo-Hyper-d-Electronic Combinations of Transition Metal Intermetallic Phases, Int. J. Hydrogen Energy, 23 (1998), 667–681.

N.V. Krstajic, J. M. Jaksic, N. M. Ristic, M. M. Jaksic, Electrocatalysis for Hydrogen Electrode Reactions in the Light of Fermi Dynamics and Structural Bonding Factors. I. Individual Electrocatalytic Properties of Transition Metals, Int. J. Hydrogen Energy, 23 (1998), 1121–1156.

M. M. Jaksic, Hypo-Hyper-d-Electronic Interactive Nature of Synergism in Catalysis and Electrocatalysis for Hydrogen Reactions, Electrochim. Acta, 45 (2000), 4085–4099.

A. A. Balandin, The Theory of Heterogeneous Catalytic Reactions. The Multiplet Hypothesis. Model for Dehydrogenation Catalysis, Z. Physik. Chem., Abt. B, 2 (1929), 289–316.

A. A. Balandin, Modern State of the Multiplet Theory of Heterogeneous Catalysis, Adv. Catalysis, 19 (1969), 1–210.

R. Parsons, The rate of Electrolytic Hydrogen Evolution and the Heat of Adsorption of Hydrogen, Trans. Faraday Soc., 54 (1958), 1053–1063.

R. Parsons, The Kinetics of Electrode Reactions and the Electrode Material, Surf. Sci., 2 (1964), 418–435.

R. Parsons, Electrocatalysis and the Nature of the Electrode, Surf. Sci., 18 (1969), 28–43.

Downloads

Published

2011-06-15

How to Cite

Jakšić, J. M., Radmilović, V. R., Krstajić, N. V., Lacnjevać, Časlav M., & Jakšić, M. M. (2011). Volcanic periodicity plots along transition series, hypo-hyper-d-d-interelectronic correlations and electrocatalysis for hydrogen electrode reactions. Macedonian Journal of Chemistry and Chemical Engineering, 30(1), 3–18. https://doi.org/10.20450/mjcce.2011.66

Issue

Section

Electrochemistry