Removal of cobalt(II) from aqueous solution by local Saudi bentonite: Kinetic and equilibrium investigations
DOI:
https://doi.org/10.20450/mjcce.2016.852Keywords:
bentonite, cobalt, kinetics, equilibriumAbstract
Natural bentonite clay from Saudi Arabia was used to remove cobalt from aqueous solution. The clay samples were first characterized for their chemical composition and structure. Batch sorption studies were then conducted to assess their capacity to remove cobalt. The effect of contact time, initial analyte concentration, bentonite dose and temperature on the adsorption was investigated. The results showed that equilibrium was attained in 60 minutes. The metal adsorption was fitted to a Langmuir isotherm model and the maximum monolayer adsorption capacity was found to be 19.85 mg g−1 at 333 K. The pseudo-second-order kinetic model provided the best correlation to the experimental data. The application of an intra-particle diffusion model revealed that the adsorption mechanism of the cobalt ions is a rather complex process and that diffusion is involved in the overall rate of the adsorption process, but it is not the only rate-controlling step. The activation energy, Ea, ranged between 4.33 and 9.14 kJ mol−1, indicating a physical adsorption process.
References
L. Charerntanyarak. Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology, 39(10–11):135–138, (1999).
M. Mohsen-Nia, P. Montazeri, H. Modarress. Removal of Cu2+ and Ni2+ from waste water with a chelating agent and reverse osmosis processes. Desalination, 217(1–3):276–281, (2007).
S. Y. Kang, JU Lee, S. H. Moon, K. W. Kim. Competi-tive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized, wastewater. Chemosphere, 56(2):141–147, (2004.
M. Q. Jiang, X. Y. Jin, X. Lu and Z. L. Chen. Adsorp-tion of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252; 33–39, (2010).
J. Landáburu-Aguirre, V. García, E. Pongrácz, R. L. Keiski. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination, 240(1–3); 262–269, (2009).
K. D. Adebowale, E. I. Emmanuel, B. I. Dlu-Dwolabi. Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. Chemical Engineering Journal, 136(2–3); 99–107, (2008).
S. Yao, J. Zhang, D. Shen, R. Xiao, S. Gu, M. Zhao, J. Liang. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating, Journal of Colloid and Interface Science, 463; 118–127, (2016).
J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin and S. K. W. Sing, Adsorption by Powders and Porous Solids (Second edition), Principles, Methodology and Applications, Academic Press, San Diego, 2013.
V. G. Georgieva, M. P. Tavlieva, S. D. Genieva and L. T. Vlaev, Adsorption kinetics of Cr(VI) ions from aqueous solutions onto black rice husk ash, Journal of Molecular Liquids, 208; 219–226, (2015).
M. Duc, F. Gaboriaud, F. Thomas, Sensitivity of the acid–base properties of clays to the methods of preparation and measurement. 1. Literature review, J. Colloid Interface Sci. 289; 139–147, (2005).
P. Mpofu, J. Addai-Mensah, J. Ralston. Interfacial chemistry, particle interactions and improved dewatering behaviour of bentonite clay dispersions. International Journal of Mineral Processing, 75; 155–171, (2005).
H. H. Murray, Overview — clay mineral applications, Appl. Clay Sci. 5; 379–395, 1991.
H. H. Murray, Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Elsevier B. V, 2006.
M. I. Attia, O. K. Alduaij1, L. Khezami, Assessment of Nickel(II) Removal from Aqueous Solution Using Saudi Bentonite. SYLWAN., 159(1)], 146–166, (2014).
S. S. Al-Shahrani. Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Engineering Journal, 53; 205–211, 2014.
M. Monier, D. M. Ayadb, Y. Wei and A. A. Sarhanb. Adsorption of Cu(II), Co(II), and Ni(II) ions by modi-fied magnetic chitosan chelating resin. Journal of Haz-ardous Materials, 177; 962–970, (2010).
S. Rengaraj, K. H. Yeon, S. Y. Kang, J. U. Lee, K.W. Kim, S. H. Moon. Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin. J Hazard Mater B92:185–198, (2002).
M. W. Yang, R. L. Boles, T. P. Mawhinne. Determina-tion of phosphorus in fertilizers by inductively coupled plasma atomic emission spectrometry. JAOAC Int., 85(6):1241–1246, (2002).
B. C. Lippens, J. H. De Boer. Pore systems in catalysts V. The t-method, J. Catalysis, 4; 319–323, 1965.
N. Kannan, M. M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons — a comparative study, Dyes Pigments 51; 25–40, (2001).
Y. S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Protect. 76; 183–191, (1998).
L. Khezami and R. Capart. Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Journal of Hazardous Materials B123; 223–231, (2005).
S. J. Allen, G. Mckay, K. Khader. Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. J. Environ. Pollut. 50 39–50, (1989).
K. P. Yadava, B. S. Tyagi, K. K. Panday, V. N. Singh, Fly ash for the treatment of Cd(II) rich effluents, Envi-ron. Technol. Lett. 8; 225–234, (1987).
D. J. L. Guerra, I. Mello, R. Resende, R. Silva. Application as absorbents of natural and functionalized Brazilian bentonite in Pb+2 adsorption: Equilibrium, kinetic, pH and thermodynamic effects. Water Resources and Industry 4; 32–50, (2013).
J. A. Hefne, W. K. Mekhemer, N. M. Alandis, O. A. Aldayel, T. Alajyan. Removal of Silver(I) from Aqueous Solutions by Natural Bentonite. JKAU: Sci., 22 (1); 155–176, (2010).
D. Shu-li, S. Yu-zhuang, Y. Cui-na, X. Bo-hui, Removal of copper from aqueous solutions by bentonite and the factors affecting it, J. Min. Sci. Technol. 19, 0489–0492, (2009).
M. Onal, Y. Sarikaya, T. Alemdaroglu and I. Bozdogan. The Effect of Acid Activation on Some Physicochemical Properties of a Bentonite. Turk J Chem 26; 409 – 416, (2002).
I. C. Bourg, G. Sposito and A. C. M. Bourg. Modeling cation diffusion in compacted water-saturated sodium bentonite at low ionic strength. Environ. Sci. Technol. 41; 8118–8122, (2007).
S. Goldberg. Competitive Adsorption of Arsenate and Arsenite on Oxides and Clay Minerals. Soil Sci. Soc. Am. J. 66: 413–421, (2002).
I. Dékány and L. G. Nagy. Immersional Wetting and Adsorption Displacement on Hydrophilic/hydrophobic Surfaces, J. Coll. Interface Sci., 147; 119–128, (1991).
L. S. G. Galindo, A. F. de A. Neto, M. G. C. da Silva, M. G. A. Vieira. Removal of Cadmium (II) and Lead (II) Ions from Aqueous Phase on Sodic Bentonite. Materials Research. 16(2); 515–527, (2013).
Ö. Yavuz, Y. Altunkaynak, F.Guzel. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Watet Res, 37; 948–952, (2003).
T. N Webber, R. K. Chakravarti : Pore and Solid Diffusion Models for fixed bed absorbers. J. Am. Inst. Chem. Eng., 20; 228– 238, (1974).
Y. S. Ho, C. T. Huang, H. W. Huang, Equilibrium sorption isotherm for metal ions on tree fern, Process. Biochem. 37; 1421–1430, (2002).
M. J. Angove, B. B. Johnson and J. D. Wells. The influence of temperature on the adsorption of cadmium (II) and cobalt(II) on kaolinite. Journal of Colloid and Interface Science 204, 93–103, (1998).
Z. Melichová and L. Hromada. Adsorption of Pb+2 and Cu+2 ions from aqueous solution by natural bentonite. Pol. J. Environ. Stud., 22 (2); 457–464, (2013).
A. Wongkoblap, Y. Ngernyen, S. Budsaereechai, C. Atiwat. Heavy Metal Removal from Aqueous Solution by using Bentonite Clay and Activated Carbon: In: Chemeca 2013: Challenging Tomorrow. Barton, ACT: Engineers Australia,: 689–694. 2013 (Conference Paper).
N. Chiron, R. Guilet and E. Deydier. Adsorption of Cu(II) and Pb(II) onto A Grafted Silica: Isotherms and Kinetic Models, Water Res., 37; 3079–3086, (2003).
R. Donat, A. Akdogan, E. Erdem, H. Cetisli. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science 286; 43–52, (2005).
Z. Q. Guo, Y. Li, S.W. Zhang, H. H. Niu, Z. S. Chen and J. Z. Xu. Enhanced sorption of radiocobalt from water by Bi(III) modified montmorillonite: A novel adsorbent. J Hazard Mater, 192; 168–175, (2011).
A. A El-Bindary, A. Z. El-Sonbati, A. A. Al-Sarawy, K. S. Mohamed and M. A. Farid. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: Kinetic, equilibrium and thermodynamic studies. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 136; 1842–1849, (2015).
H. Zheng, D. Liua, Y. Zheng, S. Liang and Z. Liua. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials 167; 141–147, (2009).
Z. Liu and S. Zhou. Adsorption of copper and nickel on Na-bentonite. Process Safety and Environmental Protection, 88; 62–66, (2010).
K. G. Bhattacharyya and S. Sen Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Advances in Colloid and Interface Science, 140 (2); 114–131, (2008).
D. Doulia, C. Leodopoulos, K. Gimouhopoulos, F. Rigas. Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science, 340; 131–141, (2009).
A. Zendelska, M. Golomeova, K. Blažev, B. Boev, B. Krstev, B. Golmeaov, A. Krstev. Kinetic studies of manganese removal from aqueous solution by adsorp-tion on natural zeolite. Macedonian Journal of Chemistry and Chemical Engineering, 34 (1); 213–220, (2015).
N. B. Milosavljevic, M. D. Ristic, A. A. Peric-Grujic, J. M. Filipovic, S. B. ˇStrbac, Z. L. Rakocevic, M. T. K. Krusic. Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid:FTIR, SEM/EDX, AFM, kinetic and equilibrium study. Colloids and Surfaces A: Physicochem. Eng. Aspects, 388; 59–69, (2011).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.