Development of procedure for the assessment of cognitive complexity of stoichiometric tasks

Saša Horvat, Mirjana D. Segedinac, Dušica D. Milenković, Tamara N. Hrin


The aim of this study was the creation of a procedure for determining the cognitive complexity of stoichiometric tasks and its validation. The created procedure included an assessment of the difficulty of concepts and skills, and an assessment of the concepts’ interactivity. There were 82 students who participated in the study, with an educational profile of a pharmaceutical technician. As a research instrument for assessing performance, test of knowledge was used. Each task in the test was followed by a seven-point Likert scale for the evaluation of invested mental effort. The validity of this instrument for the assessment of cognitive complexity was confirmed by a series of linear regression analysis where extremely high values of correlation coefficients are obtained among the examined variables: student’s performance and invested mental effort (dependent variables) and cognitive complexity (independent variable).



Mental effort; Performance; Problem-solving; Stoichiometry

Full Text:



L. Cardellini, Chemistry: Why the subject is difficult?, Educ. Quím., 23(E2), 305–310 (2012).

H. J. Schmidt, C. Jignéus, Students' strategies in solving algorithmic stoichiometry problems. Chem. Educ. Res. Prac., 4(3), 305–317 (2003).

DOI: 10.1039/B3RP90018E

J. Molnár, L. Molnár-Hamvas, LEGO–method ⎯ new strategy for chemistry calculation. US–China Education Review B, 7, 891–908 (2011).

E. P. Wagner, A study comparing the efficacy of a mole ratio flow chart to dimensional analysis for teaching reaction stoichiometry. Sch. Sci. Math., 101(1), 10–22 (2011). DOI: 10.1111/j.1949-8594.2001.tb18185.x

R. M. Felder, Stoichiometry without tears. Chem. Eng. Educ., 24(4), 188–196 (1990).

C. Dahsah, R. K. Coll, Thai grade 10 and 11 students' understanding of stoichiometry and related concepts, Int. J. of Sci. and Math. Educ., 6(3), 573–600 (2008).

DOI: 10.1007/s10763-007-9072-0

I. M. Duncan, A. H. Johnstone, The mole concept in chemistry. Educ. Chem., 10(6), 213–215 (1973).

L. Astudillo, M. Niaz, Reasoning strategies used by students to solve stoichiometry problems and its relationship to alternative conceptions, prior knowledge, and cognitive variables, J. Sci. Educ. Technol. 5(2), 131–140 (1996). DOI: 10.1007/BF01575153

F. N. Finley, J. Stewart, W. L. Yarroch, Teachers’ perceptions of important and difficult science content, Sci. Educ., 66(4), 531–538 (1982).

DOI: 10.1002/sce.3730660404

B. H., Ngu, A. S. Yeung, Algebra word problem solving approaches in a chemistry context: Equation worked examples versus text editing, J. Math. Behav., 32(2), 197–208 (2013). DOI: 10.1016/j.jmathb.2013.02.003

R. M. Heyworth, Procedural and conceptual knowledge of expert and novice students for the solving of a basic problem in chemistry, Inter. J. Sci. Educ., 21(2), 195–211 (1999). DOI: 10.1080/095006999290787

S. BouJaoude, H. Barakat, Secondary school students’ difficulties with stoichiometry, Sch. Sci. Rev., 81(296), 91–98 (2000).

N. Karuppiah, Solving stoichiometric problems: Do we really understand our students?, CoSMed 2007, Penang, Malaysia. Retrieved from cosmed/cosmed07/abstractsfullpapers2007/SCIENCE/S029F.pdf Accessed June 2014.

G. A. Miller, The magical number seven, plus or minus two: Some limits on our capacity for processing information, Psychol. Rev., 63(2), 81–97 (1956).


A. H. Johnstone, New stars for the teacher to steer by? J. Chem. Educ., 61(10), 847–849 (1984).

DOI: 10.1021/ed061p847

A. H. Johnstone, H. El–Banna, Understanding learning difficulties a predictive research model. Stud. High. Educ., 14(2), 159–167 (1989).

DOI: 10.1080/03075078912331377486

M. Niaz, Reasoning strategies of students in solving chemistry problems as a function of developmental level, functional M-capacity, and disembedding ability. Inter. J. Sci. Educ., 18(5), 525–542 (1996).

DOI: 10.1080/0950069960180503

J. Sweller, Cognitive load during problem solving: Effects on learning, Cognitive Sci., 12(2), 257–285 (1988). DOI: 10.1016/0364-0213(88)90023-7

F. Paas, Training strategies for attaining transfer of problem–solving skill in statistics: A cognitive–load approach, J. Educ. Psychol., 84(4), 429–434 (1992).

DOI: 10.1037/0022-0663.84.4.429

F. Paas, J. J. G. van Merriënboer, Instructional control of cognitive load in the training of complex cognitive tasks, Educ. Psychol. Rev., 6(4), 51–71 (1994).

DOI: 10.1007/BF02213420

J. Bieri, Cognitive complexity–simplicity and predictive behaviour, J. Abnorm. Soc.l Psych., 51(2), 263–268 (1955). DOI: 10.1037/h0043308

D. J Campbell, Task complexity: A review and analysis, Acad. Manage. Rev., 13(1), 40–52 (1988).

DOI: 10.5465/AMR.1988.4306775

B. R. Burleson, S. E. Caplan, Cognitive Complexity, in Communication and personality: Trait perspectives, J. C. McCroskey, J. A. Daly & M. M. Martin (Eds.), Cresskill, NJ: Hampton, 1998, pp. 230–286.

V. Benet-Martínez, F. Lee, J. Leu, Biculturalism and cognitive complexity: Expertise in cultural represen-tations, J. Cross. Cult. Psychol., 37(4), 386–407 (2006). DOI: 10.1177/0022022106288476

R. J. Nadolski, P. A. Kirschner, J. J. G. van Merriënboer, J. Wöretshofer, Development of an instrument for measuring the complexity of learning task, Educ. Res. Eval., 11(1), 1–27, (2005).

DOI: 10.1080/13803610500110125

D. C. Maynard, M. D. Hakel, Effects of objective and subjective task complexity on performance, Hum. Perform., 10(4) 303–330 (1997).

F. L. Lee, R. Heyworth, Problem complexity: A measure of problem difficulty in algebra by using computer. Educ. J., 28(1), 85–107 (2000).

P. Robinson, Task complexity, task difficulty, and task production: Exploring interactions in a componential framework, Appl. Linguist., 22(1), 27–57, (2001).

DOI: 10.1093/applin/22.1.27

A. H. Johnstone, Chemical education research in Glasgow in perspective. Chem. Educ. Res. Pract., 7(2), 49–63, (2006). DOI: 10.1039/B5RP90021B

K. Knaus, K. Murphy, A. Blecking, T. Holme, A valid and reliable instrument for cognitive complexity rating assignment of chemistry exam items, J. Chem. Educ., 88(5), 554–560 (2011). DOI: 10.1021/ed900070y

J. R. Raker, J. M. Trate, T. A. Holme, K. Murphy, Adaptation of an instrument for measuring the cognitive complexity of organic chemistry exam items, J. Chem. Educ., 90(10), 1290–1295 (2013).

DOI: 10.1021/ed400373c

M. Segedinac, M. Segedinac, Z. Konjović, G. Savić, A formal approach to organization of educational objectives, Psihologija, 44(4) 307–323, (2011).

F. G. W. C. Paas, J. J. G. van Merriënboer, Variability of worked examples and transfer of geometrical problem–solving skills: A cognitive–load approach, J. Educ. Psychol., 86(1),122–133 (1994).

DOI: 10.1037/0022-0663.86.1.122

P. Ayres, F. Paas, Cognitive load theory: New directions and challenges, Appl. Cognitive Psych., 26(6), 827–832 (2012). DOI: 10.1002/acp.2882

S. Kalyuga, Managing cognitive load in adaptive multimedia learning, Information Science Reference, New York (2009).

P. Ayres, Using subjective measures to detect variations of intrinsic cognitive load within problems, Learn. Instr., 16(5), 389–400 (2006).

DOI: 10.1016/j.learninstruc.2006.09.001

B. H. Ngu, E. Mit, F. Shahbodin, J. Tuovinen,. Chemistry problem solving instruction: a comparison of three computer–based formats for learning from hierarchical network problem representations, Instr. Sci., 37(1), 21–42 (2009). DOI: 10.1007/s11251-008-9072-7

E. Pollock, P. Chandler, J. Sweller, Assimilating complex information, Learn. Instr., 12(1), 61–86 (2002). DOI: 10.1016/S0959-4752(01)00016-0

D. Milenković, M. Segedinac, T. Hrin, Increasing high school students’ chemistry performance and reducing cognitive load through an instructional strategy based on the interaction of multiple levels of knowledge representation, J. Chem. Educ., 91(9), 1409–1416 (2014).

D. Milenković, M. Segedinac, T. Hrin, S. Cvjetićanin, Cognitive load at different levels of chemistry representations, Croat. J. Educ., 16(3), 699–722 (2014).

S. S. Pande, R. P. Pande, V. P. Parate, A. N. Nikam, S. H. Agrekar, Correlation between difficulty and dis-crimination indices of MCQs in formative exam in physiology, SE. Asian J. Med. Educ., 7(1), 45–50 (2013).

J. Sweller, P. Chandler,. Why some material is difficult to learn, Cognition Instruct., 12(3), 185–253 (1994). DOI: 10.1207/s1532690xci1203_1

K. J. Knaus, K. L. Murphy, T. A. Holme, Designing chemistry practice exams for enhanced benefits an instrument for comparing performance and mental effort measures, J. Chem. Educ., 86(7), 827–833 (2009).

DOI: 10.1021/ed086p827

K. Murphy, Using a personal response system to map cognitive efficiency and gain insight into a proposed learning progression in preparatory chemistry, J. Chem. Educ., 89(10), 1229–1235 (2012).

DOI: 10.1021/ed100859n



  • There are currently no refbacks.

Copyright (c) 2016 Saša Horvat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.