Green approach using water mediated Diels-Alder reaction for the synthesis of some 2-(4-bromo-1-naphthyl)-3-(aryl)bicyclo[2.2.1]hept-5-ene methanones and evaluation of their antimicrobial and antioxidant activities
DOI:
https://doi.org/10.20450/mjcce.2017.918Keywords:
Diels-Alder reaction, 4-bromo-1-naphtyl bicyclo[2.2.1]methanones, antimicrobial activities, antioxidant activityAbstract
Some (4-bromo-1-naphthyl)-(3-(substituted phenyl) bicyclo[2.2.1]hept-5-en-2-yl) methyl ketones were synthesized by fly-ash catalyzed environmentally benign Diels-Alder [4+2] cycloaddition reaction of 4-bromo-1-naphthyl chalcones and cyclopentadiene in water medium. In this reaction, the obtained yield was more than 60%. The synthesized methanones were characterized by their physical constants, microanalysis, infrared, nuclear magnetic resonance and mass spectroscopic data. The antibacterial and antifungal activities of these ketones were evaluated by the disc diffusion-zone of inhibition and two-fold serial-dilution-minimum inhibitory concentration of their corresponding bacterial and fungal strains using the Bauer-Kirby method. The antioxidant activities of these methanones were measured using the diphenyl picryl hydrazyl (DPPH) radical scavenging activity method.
References
A. N. Thadani, A. R Stankovic, V. H. Rawal, Enantioselective CuII-catalyzed Diels–Alder and Michael addition reactions in water using bio-inspired triazacyclophane-based ligands, Eur. J. Org. Chem, 1714–1720 (2011). DOI: 10.1002/ ejoc. 201001522.
H. B. Albada, F. Rosati, D. Cquiere, G. Rofelfes, R. M. J. Liskamp, Enantioselective Diels–Alder reactions cata-lyzed by hydrogen bonding, PNAS, 101, 5846–5850 (2004). DOI: 10.1073/pnas.0308545101.
E. B. Mubofu, J. B. F. N. Engberts, Specific acid cataly-sis and Lewis acid catalysis of Diels–Alder reactions in aqueous media, J. Phys. Org. Chem, 2004, 17, 180–186 (2004). DOI: 10.1002/poc.711.
B. Liu, T.Y. Liu, S. W. Luo, L. Z.Gong, Asymmetric hetero Diels-Alder reaction of diazines catalyzed by chiral silver phosphate: Water participates in the catalysis and stereocontrol, Org Lett, 16, 6164–6167 (2014).
DOI: dx.doi.org/ 10.1021/ ol503047s.
D. B. Ramachary, N. S. Chowdari, C. F. Barbas, Amine-catalyzed direct self Diels–Alder reactions of α, β-unsaturated ketones in water: Synthesis of pro-chiral cyclohexanones, Tetrahedron Lett. 43, 6743–6746 (2002). DOI: http://dx.doi.org/10.1016/S0040-4039 (02)01500-9.
R. Thayumanavan, B. Dhevalapally, K. Sakthivel, F. Tanaka, C. F. Barbas, Amine-catalyzed direct Diels-Alder reaction of α,β-unsaturated ketones with nitro olefins, Tetrahedron Lett, 2002, 43, 3817–3820(2002). DOI: http://dx.doi.org/10.1016/S0040-4039(02)00686-X
M. Krebs, S. Laschat, Lewis acid catalyzed Diels-Alder reaction of 2-cyclopentenones with Danishfsky’s diene: double bond isomerization of tetrahydro-1H-indene-1,5(7aH)-diones, and attempts on an asymmetric cataly-sis, Arkivoc, 3, 5–19 (2012).
V. Marchan, S. Ortega, D. Pulido, E. Pedroso, A. Grandas, Diels-Alder cycloadditions in water for the straightforward preparation of peptide–oligonucleotide conjugates, Nucleic Acids Res, 34, e24 (2006). DOI:10.1093/nar/gnj020
P. Buonora, J. C. Olsen, T. Oh, Recent developments in imino Diels-Alder reactions, Tetrahedron. 57, 6099–6138 (2001).
DOI: http://dx.doi.org/10.1016/S0040-4020 (01) 00438-0
P. A. Grieco, J. J. Nunes, M. D. Gaul, Dramatic Rate Accelerations of Diels-Alder Reactions in 5 M Lithium Perchlorate-Diethyl Ether: The Cantharidin Problem Reexamined, J Am Chem Soc, 1990, 112, 4595–4596(1990). DOI: 10.1021/ ja00167 a096.
K. T. Gagnon, S. Y. Ju, M. B. Goshe, E. S. Maxwell, S. Franzen, A role for hydrophobicity in a Diels–Alder re-action catalyzed by pyridyl-modified RNA, Nucleic Acids Res, 37, 3074–3082 (2009).
DOI: 10.1093/nar/gkp177.
M. B. Gawande, Current Trends in Aqueous Mediated Organic Synthesis. Organic Chem Curr Res, 3, 100e134, (2014).
DOI: http://dx.doi.org/10.4172/2161-0401.1000e134.
J. Bah, J. Franzén, Carbocations as Lewis Acid Catalysts in Diels-Alder and Michael Addition Reactions, Chem-Eur J, 20, 1066–1082 (2014).
DOI: 10.1002/chem. 201304160
F. A. Gbaguidi, U. C. Kasséhin, J. R. C. Prevost, R. Frederick, C. R. McCurdy, J. H. Poupaert, Insight into the Diels-Alder reaction: A green chemistry revisitation of the synthesis of a cantharidine-like trypanocidal pilot-molecule, J. Chem. Pharm. Res, 7, 1109–1113 (2015).
L. C. Dias, Chiral Lewis acid catalysts in Diels-Alder cycloadditons: Mechanistic aspects and synthetic appli-cations of recent systems, J. Braz. Chem. Soc, 8, 289–232 (1997).
DOI:http://dx.doi.org/10.1590/S0103-50531997000400001
N. A. Mirgane, A. V. Karnik, Aqueous ethanol: a suitable medium for the diastereoselective Diels–Alder reaction mediated by chiral bases, Green Chem. Lett. Rev, 4, 269–272 (2011).
DOI: http://dx.doi.org/10.1080/17518253.2011.571715
D. H. Paull, E. A. Danforth, J. Wolfer, C. D. Isonagie, C. J. Abraham, T. J. Lectka, An Asymmetric, bifunctional catalytic approach to non-natural alpha-amino acid derivatives, Org. Chem, 72, 5380–5382 (2007). DOI: 10.1021/jo070472x
Larson C H M, Ph.D. Thesis, California Institute of Technology, 2005.
K. E. Litz, Aqueous Ti(IV)-Catalyzed Diels-Alder Reac-tion., Molecules, 12, 1674–1678 (2007).
DOI:10.3390/12081674.
C. Loncaric, K. Manabe, S. Kobayashi, Alkaline salt-catalyzed aza Diels–Alder reactions of Danishefsky’s diene with imines in water under neutral conditions, Chem. Communn, 2003, 574–676 (2003).
DOI: 10.1039/B300880K, Communication
G.Thirunarayanan, Insect antifeedant potent 9H-fluorenacyl bromide, Q-Science Connect, 2014.
DOI: http://dx.doi.org/ 10.5339/ connect. 2014.18
G. Thirunarayanan, Aqueous phase fly-ash catalyzed [4+2] Diels-Alder reaction of aryl enones and cyclopentadiene: Synthesis and insect antifeedant activi-ties of arylbicyclo[2.2.1]heptene-2-yl-methanones, Annales-UMCS, 9, 127–140 (2014).
DOI: http://dx.doi.org/10.17951/aa.2014.69.1-2.127
G. Thirunarayanan, Synthesis of antimicrobial, antioxi-dant and insect antifeedant potent 3,4-dimethyl phenyl bicyclo[2.2.1]heptane methanone derivatives, Org. Chem: An Indian J., 13, 112–121 (2015).
G. Thirunarayanan, Bio-potent (5-chloro-2-thienyl)-3-(substituted phenyl) bicyclo[2.2.1] heptane-2-yl methanone derivatives, Int. Lett. Chem. Phys. Astro, 42, 1–12 (2015).
G. Thirunarayanan, Synthesis, pharmacological and insect antifeedant activity evolution of some (4-chloro-1-naphthyl)(3-(substituted phenyl) bicyclo[2.2.1]hept-5-en-2-yl) methanones, Int. J. Chem, 4, 173–182 (2015).
I. H. Chen, J. N. Young, S. J. Yu, Recyclable organotungsten Lewis acid and microwave assisted Diels–Alder reactions in water and in ionic liquids, Tetrhedro, 60, 11903–11909 (2004).
DOI: http://dx.doi.org/10.1016/j.tet.2004.09.078.
A. Serganow, S. Keiper, L. Malinina, V. Tereshko, E. Skripkin, C. Hobartner, A. Polonskaia, A. T. Phan, R. Wombacher, R. Micura, Z. Dauter, A. Jaschke, D. J. Pa-tel, Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation, Nature Struct. Mol. Biol, 12, 218–224 (2005). DOI: 10.1038/nsmb906
Rer Nat, Disseration, Universitat Regensburg. 2009.
A. Wittkopp, P. R. Schreiner, Metal-Free, Noncovalent Catalysis of Diels ± Alder Reactions by Neutral Hydro-gen Bond Donors in Organic Solvents and in Water, Chem. Eur. J. 9, 407–414 (2003).
DOI: 10.1002/chem.200390042.
T. S. Fard, S. Caratzoulas, D. J. Doren, DFT study of solvent effects in acid-catalyzed Diels-Alder cycloadditions of 2,5-dimethylfuron and maleic anhy-dride, J. Phys. Chem, 119, 9834–9843 (2015).
DOI: 10.1021/ acs. jpca.5b05060.
B. Yang, P. A. Miller, U. Möllmann, M. J. Miller, Syn-theses and Biological Activity Studies of Novel Sterol Analogs from Nitroso Diels−Alder Reactions of Ergosterol, Org. Lett, 11, 2828–2831 (2009).
DOI: 10.1021/ol900997t.
C.T. Qian, L. C. Wang, R. F. Chen, Asymmetric Hetero Diels-Alder Reaction of Chiral Imines with Danishefsky's Diene Catalyzed by Yb(OTf)3, Chinese J. Chem, 19, 419–422 (2001).
DOI: 10.1002/cjoc.20010190418.
Z. P. Pai, P. V. Berdnikova, A. A. Nosikov and B. M. Khlebnikov, Catalytic Oxidation of , β- and β,γ-Unsaturated Bicyclic Ketones by Hydrogen Peroxide, Chem. Sus. Dev, 16, 413–418, (2008).
R. Pratap, R. Raghunathan, A. Kumar, V. J. Ram, Bicy-clic ketone mediated synthesis of oxygenated aromatic systems, RSC Adv, 2, 2688–2691 (2012).
DOI: 10.1039/ C2RA01253G, Communication.
G. Thirunarayanan, Antimicrobial and antioxidant potent 2-(5-bromo-2-thienyl)-3-(substituted phenyl) bicyclo[2.2.1]heptane-5-ene-2-ylmethanone derivatives, Chem J. 6, 41–48, (2016).
G. Thirunarayanan, Synthesis, characterization and evaluation of biological activities of some 2,3-diaryl bicyclo methanones. Ovidius Univ. Annals Chem, 27, 36‒42, (2016). DOI: 10.1515/auoc-2016-0003.
G. Thirunarayanan, Greener Synthesis, antimicrobial, antioxidant and insect antifeedant activities of some 2-(9-anthryl)-3-(substituted phenyl)bicyclo[2.2.1]hept-5-ene-2-yl ketones J Pharm Appl Chem, 2, 59‒66 (2016). DOI: http://dx.doi.org /10.18576/jpac/pape
W. Dehaen, A. A. Mashentseva,T. S. Seitembetov, Allobetulin and Its Derivatives: Synthesis and Biological Activity, Molecules, 16, 2443‒2466 (2011).
DOI: 10.3390/molecules16032443.
A. S. Saratikov, L. A. Pchelkina, N. A. Belikova, A. A. Boyleva, N. F. Dubitskaya, M. D. Ordubadi, S. K. Ermolaeva, A. F. Plate, Biological activity of bi and tri cyclic ketones., Khim. Farm. Zhurnal, 11, 59‒61, (1977).
D. Belsito, D. Bickers, M. Bruze, P. Calow, M. L. Dagli, A. D. Fryer, H. Greim, Y. Miyachi, J. H. Saurat, I. G. Sipes, A toxicological and dermatological assessment of alkyl cyclic ketones when used as fragrance ingredients The RIFM Expert Panel., Food Chem. Toxicol, 62, S1–S44 (2013).
DOI: http://dx.doi.org/10.1016/ j.fct. 2013. 09.033.
F. D. Pop, R. Parson, B. E. Donigan, Potential anticon-vulsants.III. The condensation of isatin with cyclic ke-tones. J. Heterocyclic Chem, 17, 1329‒1330 (1980). DOI: 10.1002/jhet.5570170639
A. W. Bauer, W. M. M. Kirby, J. C. Sherris, M. Truck, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol, 45, 493‒496 (1966). DOI: https://www.ncbi.nlm.nih.gov/pubmed/5325707
G. Thirunarayanan, G. Vanangamudi, Synthesis of some 4-bromo-1-naphthyl chalcones using silica-sulfuric acid reagent under solvent free conditions, Arkivoc, 12, 58‒64 (2006).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.