The role of conductive dopants in polymer cholesteric liquid crystals

Anka Trajkovska Petkoska

Abstract


 

Abstract

Variety of conductive dopants were used to modify the electric properties of polymer cholesteric liquid crystals. Different types of carbon blacks, carbon nanotubes, as well as metallic particles were used as conductive dopants in this work. All of them affected the conductivity of the polymer matrix, but at different dopant concentrations. The percolation threshold behaviour of used dopants in the polymer host showed pronounced dependence on the dopants’ particle size and particle shape anisotropy. For instance,  the higher the aspect ratio of carbon-based dopant particles (aspect ratio = length : diametar), the lower the percolation threshold; while increase in metallic dopants' diameter yielded higher percolation threshold of polymer composition.



Keywords


polymer cholesteric liquid crystals, conductive dopants, carbon black, carbon nanotubes, percolation threshold

Full Text:

PDF

References


B. J.-P. Adohi, A. Mdarhri, C. Prunier, B. Haidar, C. Brosseau, A comparison between physical properties of carbon black-polymer and carbon nanotubes - polymer composites, Journal of Applied Physics 108, 074108 (2010).

T. Hanem Ann, K. Honnef, Polymer-dopant-systems: Tailoring of optical and thermomechanical properties, CP1255,V-th International Conference on Times of Polymers (TOP) and Composites, A. D’Amore, D. A. Cierno, L. Grassia (Eds.), American Institute of Physics, 2010.

R. Suihkonen, K. Nevalainen, O. Orell, M. Honkanen, L. Tang, H. Zhang, Z. Zhang, J. Vuorinen, Perfor-mance of epoxy filled with nano- and micro-sized magnesium hydroxide, J. Mater. Sci. 47, 1480–1488 (2012).

L. Chen, K. Liu, T. X. Jin, F. Chen, Q. Fu, Rod like attapulgite/poly(ethylene terephtalate) nanocomposites with chemical bonding between the polymer chain and the filler, eEXPRESS Polymer Letters 6(8), 629–638 (2012).

V. V. Zuev, S. V. Kostromin, A. V. Shlykov, The effect of fullerene fillers on the mechanical properties of polymer nanocomposites, Mechanics of Composite Materials 46(2), (2010).

O. Okhay, R. Krishna, M. Salimian, E. Titus, J. Gracio, L. M. Guerra, J. Ventura, Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide, Journal of Applied Physics 113, 064307 (2013).

A. Qureshi, A. Gen, M. S. Eroglu, N. L. Singh, A. Gulluoglu, Dielectric properties of polymer composites filled with different metals, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 45, 462–469 (2008).

J. Leng, H. Lv, Y. Liu, S. Du, Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers, Applied Physics Letters 91, 144105 (2007).

S. Saengsuwan, S. Saikrasun, Thermal stability of sty-rene–(ethylene butylene)–styrene-based elastomer composites modified by liquid crystalline polymer, clay, and carbon nanotube, J. Therm. Anal Calorim. 110, 1395–140 (2012).

Y. M. Shabana, G.T.Wang, Thermomechanical model-ing of polymer nanocomposites by the asymptotic ho-mogenization method, Acta Mech. 224, 1213–1224 (2013).

X. J. Wang, The effect of the prismatic filler arrange-ment and cross-sectional shape on the thermal conduc-tivity of polymer composites, eEXPRESS Polymer Let-ters 8(12), 920–931 (2014).

H. T. Oyama, M. Sekikawa, Y. Ikezawa, Influence of the polymer/inorganic filler interface on the mechanical, thermal, and flame retardant properties of polypropylene/magnesium hydroxide composites, Journal of Macromolecular Science, Part B: Physics 50, 463–483 (2011).

M. Madani, Conducting carbon black filled NR/IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading, J. Polym. Res. 17, 53–62 (2010).

X. Jin, M. Deng, S. Kaps, X. Zhu, I. Holken, K. Mess, R. Adelung, Y. K. Mishra, Study of tetrapodal ZnO-PDMS composites: A comparison of fillers shapes in stiffness and hydrophobicity improvements, PLOS ONE 9 (9), e106991 (2014).

S. M. Zabihzadeh, Water uptake and flexural prop-erties of natural filler/HDPE composites, BioResources 5(1), 316–323 (2010).

A. Ghosh, L. Ma, C. Gao, Zeolite molecular sieve 5A acts as a reinforcing filler, altering the morphological, mechanical, and thermal properties of chitosan, J. Ma-ter. Sci. 48, 3926–3935 (2013).

A. S. Ermilov, E. M. Nurullaev, Optimization of frac-tional composition of the filler of elastomer composites, Mechanics of Composite Materials 49(3) (2013).

V. Mittal, Modelling and prediction of barrier prop-erties of polymer layered silicate nanocomposites, Polymers & Polymer Composites 21(8), 509–517 (2013).

M. Bărbuţă, M. Harja, I. Baran, Comparison of mechanical properties for polymer concrete with different types of filler, Journal of Materials in Civil Engineering, SCE 696 (2010).

L. Lee, I.-J. Kim, S. Yang, S. Kim, Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler, Res. Chem. Intermed 39, 3279–3290 (2013).

J. A. Covington, J. W. Gardner, Carbon Nanomaterial Polymer Composite ChemFET and Chemoresistors for Vapour Sensing, CP1137, Olfaction and Electronic Nose: Proceedings of the 13 International Symposium, M. Pardo and G. Sberveglieri (Eds.), 2009.

Aga and Mu, Doping of Polymers with ZnO Nanostructures for Optoelectronic and Sensor Applications, Nanowires Science and Technology, Nicoleta Lupu (Ed.), ISBN: 978-953-7619-89-3, InTech, 205–222 (2010).

A. Combessis, L. Bayon, L. Flandin, Effect of filler auto-assembly on percolation transition in carbon nanotube/polymer composites, Applied Physics Letters 102, 011907 (2013).

A. Maaroufi, K. Haboubi, A. El Amarti, F. Carmona, Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders, Journal of Materials Science 39(1), 265–270 (2004).

H. Zois, L. Apekis, Y. P. Mamunya, Structure-electrical properties relationships of polymer composites filled with Fe-powder, Macromolecular Symposia 194, 351–359 (2003).

M. Moniruzzaman, K. I. Winey, Polymer nanocompo-sites containing carbon nanotubes, Macromolecules 39(16), 5194–5205 (2006).

H. Zois, Y. P. Mamunya, L. Apekis, Structure and dielectric properties of a thermoplastic blend containing dispersed metal, Macromolecular Symposia 198, 461–472 (2003).

F. Lux, Models proposed to explain the electrical con-ductivity of mixtures made of conductive and insulating materials, Review: Journal of Materials Science 28, 285–301 (1993).

C. A. Martin, J. K. W. Sandler, M. S. P. Shaffer, M. K. Schwarz, W. Bauhofer, K. Schulte, A. H. Windle, For-mation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Composites Science and Technology 64(15), 2309–2316 (2004).

I. Balberg, A comprehensive picture of the electrical phenomena in carbon black-polymer composites, Car-bon 40, 139–143 (2001).

J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, A. H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Poly-mer 44(19), 5893–5899 (2003).

X. Jiang, Y. Bin, M. Matsuo, Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization, Polymer 46, 7418–7424 (2005).

F. M. Du, J. E. Fischer, K. I. Winey, Effect of nano-tube alignment on percolation conductivity in carbon nanotube/polymer composites, Physical Review B 72(12), 121404 (2005).

K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, K. Ishikawa, Electrical-conductivity of carbon polymer composites as a function of carbon content, Journal of Materials Science 17(6), 1610–1616 (1982).

M. Johlitz, S. Diebels, Effective mechanical behavior of filled polymers, Mechanics of Advanced Materials and Structures 18, 106–114 (2011).

L. Flandin, T. Prasse, R. Schueler, K. Schulte, W. Bauhofer, J. Y. Cavaille, Anomalous percolation transition in carbon-black-epoxy composite materials, Physical Review B 59(22), 14349–14355 (1999).

C. Park, Z. Ounaies, K. A. Watson, R. E. Crooks, J. Smith, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, T. L. S. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chemical Physics Letters 364(3–4), 303–308 (2002).

Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, J. S. Harrison, Electrical properties of single wall carbon nanotube reinforced polyimide composites, Composites Science and Technology 63(11), 1637–1646 (2003).

S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, DC and AC conductivity of carbon nano-tubes-polyepoxy composites, Macromolecules 36(14), 5187–5194 (2003).

B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films, Journal of Applied Physics 92(7), 4024–4030 (2002).

A. Trajkovska Petkoska, Polymer Cholesteric Liquid Crystal Flakes – Their Electro Optic-Behaviour for Potential E-Paper Application, Verlag Dr. Müller, VDM ISBN 978-3-639-06439-1, Germany, 2008.

A. Trajkovska-Petkoska, S. D. Jacobs, K. L. Marshall, T. Z. Kosc, Electrically Actuated Doped Polymer Flakes and Electrically Addressable Optical Devices Using Suspensions of Doped Polymer Flakes in a Fluid Host, U.S. 7,713,436 B1 (2010).

A. Trajkovska-Petkoska, S. D. Jacobs, Effect of different dopants on polymer cholesteric liquid crystals, Mol. Cryst. Liq. Cryst. 495, 334 (2008).

R. Schueler, J. Petermann, K. Schulte, H. P. Wentzel, Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin, Journal of Ap-plied Polymer Science 63(13), 1741–1746 (1997).

I. Balberg, Tunneling and nonuniversal conductivity in composite-materials, Physical Review Letters 59(12), 1305–1308 (1987).

F. Carmona, Conducting filled polymers, Physica A 157(1), 461–469 (1989).

M. T. Connor, S. Roy, T. A. Ezquerra, F. J. B. Calleja, Broadband AC conductivity of conductor-polymer composites, Physical Review B 57(4), 2286–2294 (1998).

Y. Imai, T. Fueki, T. Inoue, A.-A. K. Oto, A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon-salt type monomer/carbon black mixture, Journal of Polymer Science: Part A: Polymer Chemistry 36, 1031–1034 (1998).

T. Prasse, M. K. Schwarz, K. Schulte, W. Bauhofer, The interaction of epoxy resin and an additional electrolyte with non-oxidised carbon black in colloidal dispersions, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 189(1–3), 183–188 (2001).

H. Zois, L. Apekis, M. Omastova, Electrical properties of carbon black-filled polymer composites, Macromo-lecular Symposia 170, 249–256 (2001).

Cabot Corporation, The fundamentals of Carbon Black, Billerica Technical Center, Billerica, MA.

S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, Interac-tive effects between carbon allotrope fillers on the me-chanical reinforcement of polyisoprene based nanocomposites, eEXPRESS Polymer Letters, 8(6), 436–449 (2014).

T. Prasse, L. Flandin, K. Schulte, W. Bauhofer, In situ observation of electric field induced agglomeration of carbon black in epoxy resin, Applied Physics Letters 72(22), 2903–2905 (1998).

J. K. Foster, Effects of carbon black properties on conductive coatings, presented at the 2nd International Exhibition of Paint Industry Suppliers, Sao Paulo, Brasil, (1991).

S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (6348), 56–58 (1991).

O. Breuer, U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polymer Composites 25(6), 630–645 (2004).

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, Unusual properties and structure of carbonnanotubes, Annual Review of Materials Research 34, 247–278 (2004).

T. W. Ebbesen, Carbon nanotubes, Annual Review of Materials Science 24, 235–264 (1994).

P. Collins, J. Hagerstrom, Creating high performance conductive composites with carbon nanotubes, Hyperion Catalysis International.

R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes – the route toward applications, Science 297(5582), 787–792 (2002).

L. M. Clayton, A. K. Sikder, A. Kumar, M. Cinke, M. Meyyappan, T. G. Gerasimov, J. P. Harmon, Transpar-ent poly(methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with in-creased dielectric constants, Advanced Functional Materials 15(1), 101–106 (2005).

K. A. Watson, S. Ghose, D. M. Delozier, J. G. Smith, J. W. Connell, Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge mitigation, Polymer 46(7), 2076–2085 (2005).

K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, S. C. Tsang, Mechanical damage of carbon nanotubes by ultrasound, Carbon 34(6), 814–816 (1996).

C. A. Dyke, J. M. Tour, Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization, Chemistry A, European Journal 10(4), 813–817 (2004).

T. W. Ebbesen, H. Hiura, M. E. Bisher, M. M. J. Treacy, J. L. Shreeve Keyer, R. C. Haushalter, Decoration of carbon nanotubes, Advanced Materials 8(2), 155–157 (1996).

S. Barrau, P. Demont, E. Perez, A. Peigney, C. Lau-rent, C. Lacabanne, Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites, Macromolecules 36(26), 9678–9680 (2003).

K. Kubota, M. Sano, T. Masuko, Microwave irradia-tion for chemical modification of carbon nanotubes for better dispersion, Japanese Journal of Applied Physics, Part 1: Regular Papers Short Notes & Review Papers 44(1A), 465–468 (2005).

I. A. Tchmutin, A. T. Ponomarenko, E. P. Krinich-naya, G. I. Kozub, O. N. Efimov, Electrical properties of composites based on conjugated polymers and conductive fillers, Carbon 41(7), 1391–1395 (2003).

M. Mitov, F. de Guerville, C. Bourgerette, Evidence of surface segregation in the organization of metallic nanoparticles dispersed in a cholesteric liquid crystal, Molecular Crystals and Liquid Crystals 435, 673 (2005).

M. Mitov, C. Portet, C. Bourgerette, E. Snoeck, M. Verelst, Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal, Nature Ma-terials 1(4), 229–231 (2002).

H. Zois, L. Apekis, Y. P. Mamunya, Dielectric proper-ties and morphology of polymer composites filled with dispersed iron, Journal of Applied Polymer Science 88(13), 3013–3020 (2003).

Y. C. Wang, C. Anderson, Formation of thin trans-parent conductive composite films from aqueous colloidal dispersions, Macromolecules 32(19), 6172–6179 (1999).

A. Trajkovska-Petkoska, S. D. Jacobs, T. Z. Kosc, K. L. Marshall, Manufacture of Regularly Shaped Polymer Cholesteric Liquid Crystal Flakes with a Mechanically Flexible Mold, U.S. Pat. 7,238,316 B2 (2007).

A. Trajkovska-Petkoska, R. Varshneya, T. Z. Kosc, K. L. Marshall, S. D. Jacobs, Enhanced electro-optic behavior for shaped polymer cholesteric liquid crystal (PCLC) flakes made by soft lithography, Adv. Funct. Mater. 15, 217 (2004).

A. Trajkovska-Petkoska, S. D. Jacobs, The Manufac-ture, characterization, and manipulation of polymer chol¬еsteric liquid crystal flakes and their possible applications, Journal of Materials Science and Engineering (A&B), A2 2, 137–151 (2012).

T. Z. Kosc, K. L. Marshall, A. Trajkovska-Petkoska, E. Kimball, S. D. Jacobs, Progress in the development of polymer cholesteric liquid crystal flakes for display applications, Displays, 25, 171–176 (2004).

A. Trajkovska-Petkoska, Polymer cholesteric liquid crystal flakes as new candidates for display and sensor applications, NATO Science for Peace and Security, Series-B: Physics and Biophysics: Nanotechnological Basis for Advanced Sensors, Springer, 2011.

A. Trajkovska-Petkoska, T. Z. Kosc, K. L. Marshall, K. Hasman, S. D. Jacobs, Motion of doped polymer cholesteric liquid crystal flakes in a direct-current elec-tric field, J. Appl. Phys, 103, 094907 (2008).

Consortium für Elektrochemische Industrie GmbH, Central Research Company of Wacker Chemie GmbH, Zielstattstr. 20, D-8000 München 70, Germany.

E. M. Korenic, Colorimetry of Cholesteric Liquid Crystals, PhD Thesis, University of Rochester, Rochester, NY, 1997.

N. D. Cogger, N. J. Evans, An introduction to electro-chemical impedance measurement, Technical report, No. 6, Solartron Analytical (May, 1999).

Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation, Designation D 150–95, ASTM Standard.

P. E. Wellstead, Frequency response analysis, Tech-nical report 10, Solartron Analytical, Control System Principles, Cheshire, UK, 2003.

A. S. Riad, M. T. Korayem, T. G. Abdel-Malik, AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate, Physica B 270(1–2), 140–147 (1999).

H. Ye, C. Q. Sun, H. Huang, P. Hing, Dielectric behav-ior of nanostructured diamond films, Applied Physics Letters 78(13), 1826–1828 (2001).

M. Nagaraja, H. M. Mahesh, J. Manjanna, K. Rajanna, M. Z. Kurian, S. V. Lokesh, Effect of multiwall carbon nanotubes on electrical and structural properties of polyaniline, Journal of Electronic Materials, 41(7), (2012).

S. Palaty, K. J. Mary, J. Honey, P. V. Devi, Effect of dopants and preparation conditions on the conductivity of polyaniline, Progress in Rubber, Plastics and Recycling Technology, 26(3) (2010).

Y. Mamunya, Carbon Nanotubes as Conductive Filler in Segregated Polymer Composites – Electrical Properties, Carbon Nanotubes – Polymer Nanocomposites, Dr. Siva Yellampalli (Ed.), (2011) ISBN: 978-953-307-498-6, InTech.

J. L. Alan Kin-Tak Lau, Multifunctional Polymer Nanocomposites, Taylor and Francis Group, LLC, 2011.




DOI: http://dx.doi.org/10.20450/mjcce.2014.605

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Anka Trajkovska Petkoska

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.