Inorganic dopants in polymer cholesteric liquid crystals

Anka Trajkovska

Abstract


A variety of dopants are used for different types of polymers to change their properties. Inorganic dopants are usually used to change the dielectric properties of the polymers. These compositions find different applications especially in electronic systems due to ease of polymer processing, increased functionality and low cost of novel materials that are with relatively high dielectric constant compared to the base polymer material.

In this study, polymer cholesteric liquid crystal (PCLC) is used as a host material that is doped by different inorganic dopants, BaTiO3 and TiO2, all of them affected the dielectric constant of the polymer matrix. This is important from the fact that doped PCLC can be used for a variety of electro-optical applications, e.g. display applications and low energy consuming e-book application. The behaviour of inorganic dopants in PCLC is calculated by various existing mixing models; the best fit is observed by use of logarithmic equation.


Keywords


polymer cholesteric liquid crystals, inorganic dopants, BaTiO3, TiO2

Full Text:

PDF

References


A. Maaroufi, K. Haboubi, A. El Amarti, F. Carmona, Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders, Journal of Materials Science 39(1), 265-270 (2004).

D. M. Grannan, J. C. Gargland, D. B. Tanner, Critical behavior of the dielectric constant of a random composite near the percolation threshold, Physical Review Letters 46(5), 375-378 (1981).

H. Zois, L. Apekis, Y. P. Mamunya, Structure-electrical properties relationships of polymer composites filled with Fe-powder, Macromolecular Symposia 194, 351-359 (2003).

H. Zois, Y. P. Mamunya, L. Apekis, Structure and dielectric properties of a thermoplastic blend containing dispersed metal, Macromolecular Symposia 198, 461-472 (2003).

F. Carmona, Conducting Filled Polymers, Physica A 157(1), 461-469 (1989).

M. Moniruzzaman, K. I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules 39(16), 5194-5205 (2006).

Y. Xi, H. Ishikawa, Y. Z. Bin, M. Matsuo, Positive temperature coefficient effect of LMWPE-UHMWPE blends filled with short carbon fibers, Carbon 42(8-9), 1699-1706 (2004).

T. W. Ebbesen, Carbon Nanotubes, Annual Review of Materials Science 24, 235-264 (1994).

R. Schueler, J. Petermann, K. Schulte, H. P. Wentzel, Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin, Journal of Applied Polymer Science 63(13), 1741-1746 (1997).

Y. Lu, W. H. Lee, H. S. Lee, Y. Jang, K. Cho, Low-voltage organic transistors with titanium oxide/polystyrenebilayer dielectrics, Applied Physics Letters 94, 113303 (2009).

S. Chaudhari, T. Shaikh, P. Pandey, A Review on Polymer Tio2 Nanocomposites, Int. Journal of Engineering Research and Applications 3(5), 1386-1391 (2013).

E. Tuncer, G. Polizos, D. R. James, I. Sauers, A. R. Ellis, K. L. More, Dielectric properties of various nanocomposite materials, CP1219 Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Materials Conference- ICMC 56, U. Balachandran (Ed), American Institute of Physics (2010).

W. Ling, Q. Xia, L. Yan, C. Wang, M. Cao, L. Liu, Preparation, Morphology and Dielectric Properties of Nano-TiC/Polyimide Composite Films, Polymers & Polymer Composites, 22(2), (2014).

C. Huang, Q. M. Zhang, High-dielectric-constant all-polymer percolative composites, Applied Physics Letters 82 (20), (2003).

X. Huang, P. Jiang, L. Xie, Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity, Applied Physics Letters 95, 242901 (2009).

K. Shehzad, A. Ul-Haq, S. Ahmad, M. Mumtaz, T. Hussain, A. Mujahid, A. Tufail Shah, M. Y. Choudhry, I. Khokhar, S. Ul-Hassan, F. Nawaz, F. Rahman, Y. Butt, M. Pervaiz, All-organic PANI–DBSA/PVDF dielectric composites with unique electrical properties, J. Mater. Sci. 48, 3737–3744 (2013).

J. Xu, C. P. Wong, Effect of the Polymer Matrices on the Dielectric Behavior of a Percolative high k-Polymer Composite for Embedded Capacitor Application, Journal of Electronic Materials 35(5), 1087 (2006).

X. J. Wang, The effect of the prismatic filler arrangement and cross-sectional shape on the thermal conductivity of polymer composites, eXPRESS Polymer Letters 8 (12), 920–931 (2014).

H. T. Oyama, M. Sekikawa, Y. Ikezawa, Influence of the Polymer/Inorganic Filler Interface on the Mechanical, Thermal, and Flame Retardant Properties of Polypropylene/Magnesium Hydroxide Composites, Journal of Macromolecular Science, Part B: Physics, 50, 463–483 (2011).

M. Madani, Conducting carbon black filled NR/IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading, J. Polym. Res. 17, 53–62 (2010).

X. Jin, M. Deng, S. Kaps, X. Zhu, I. Holken, K. Mess, R. Adelung, Y. K. Mishra, Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements, PLOS ONE 9 (9), e106991 (2014).

A. Ghosh, L. Ma, C. Gao, Zeolite molecular sieve 5A acts as a reinforcing filler, altering the morphological, mechanical, and thermal properties of chitosan, J. Mater. Sci., 48, 3926–3935 (2013).

V. Mittal, Modelling and Prediction of Barrier Properties of Polymer Layered Silicate Nanocomposites, Polymers & Polymer Composites 21(8), (2013).

L. Lee, I.-J. Kim, S. Yang, S. Kim, Electrochemical properties of PEO/PMMA blend- based polymer electrolytes using imidazolium salt-supported silica as a filler, Res. Chem. Intermed., 39, 3279–3290 (2013).

Aga and Mu, Doping of Polymers with ZnO Nanostructures for Optoelectronic and

Sensor Applications, Nanowires Science and Technology, Nicoleta Lupu (Ed.), ISBN: 978-953-7619-89-3, InTech, 205-222 (2010).

M. Johlitz, S. Diebels, Effective Mechanical Behavior of Filled Polymers, Mechanics

of Advanced Materials and Structures 18, 106–114 (2011).

J. L. Alan kin-tak Lau, Multifunctional Polymer Nanocomposites, Taylor and

Francis Group, LLC, 2011.

T. Hanemann, J. Boehm, P. Henzi, K. Honnef, K. Litfin, E. Ritzhaupt-Kleissl, J. Hausselt, From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology, IEE Proc.- Nanobiotechnol., 151(4), (2004).

J. Lu, C. P. Wong, Recent Advances in High-k Nanocomposite Materials for Embedded Capacitor Applications, IEEE Transactions on Dielectrics and Electrical Insulation 15(5), (2008).

J. Lu, K.-S. Moon, J. Xu, C. P. Wong, Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications, J. Mater. Chem., 16, 1543–1548, (2006).

J. Xu, L. Wang, G. Liang, L. Wang, X. Shen, A General Quantitative Structure- Property Relationship Treatment for Dielectric Constants of Polymers, Polymer Engineering and Science 51, 12 (2011).

Q. M. Zhang, H. Li, M, Poh, Feng Xia, Z.-Y. Cheng, H. Xu, C. Huang, An all-organic composite actuator material with a high dielectric constant, Nature 419, (2002).

K. Müller, I. Paloumpa, K. Henkel, D. Schmeisser, A polymer high-k dielectric insulator for organic field-effect transistors, Journal of Applied Physics 98, 056104, (2005).

T. Lei, Q. Xue, L. Chu, Z. Han, J. Sun, F. Xia, Z. Zhang, Q. Guo, Excellent dielectric properties of polymer composites based on core-shell structured carbon/silica nanohybrid, Applied Physics Letters 103, 012902 (2013).

Y. Bai, Z.-Y. Cheng, V. Bharti, H. S. Xu, Q. M. Zhang, High-dielectric-constant ceramic-powder polymer composites, Appl. Phys. Lett., 76(25), (2000).

G. Subodh, V. Deepu, P. Mohanan, M. T. Sebastian, Dielectric response of high permittivity polymer ceramic composite with low loss tangent, Applied Physics Letters 95, 062903 (2009).

J.-R. Yoon, J.-W. Han, K.-M. Lee, Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors, Transactions on electrical and electronic materials 10(4), (2009).

P. Thomas, S. Satapathy, K. Dwarakanath, K. B. R. Varma, Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films, eXPRESS Polymer Letters 4(10), 632–643 (2010).

V. Tomer, C. A. Randall, High field dielectric properties of anisotropic polymer- ceramic composites, Journal of Applied Physics 104, 074106, (2008).

Y. Kobayashi, A. Kurosawa, D. Nagao, M. Konno, Fabrication of Barium Titanate Nanoparticles-Polymethylmethacrylate composite films and their dielectric properties, Polymer Engineering and Science 49, 6 (2009).

M. Konieczna, E. Markiewicz, J. Jurga, Dielectric Properties of Polyethylene Terephthalate/Polyphenylene sulfide/barium titanate nanocomposite for application in electronic industry, Polymer Engineering and Science 50, 8 (2010).

R. K. Goyal, V. V. Madav, P. R. Pakankar, S. P. Butee, Fabrication and Properties of Novel Polyetheretherketone/Barium Titanate Composites with Low Dielectric Loss, Journal of Electronic Materials 40(11), (2011).

Y. I. Yua, M. H. Yia, T. Ahnb, Synthesis and characterization of a novel polyimide/TiO2 nanocomposite for solution processable high k dielectric, Journal of Ceramic Processing Research 13(2), 202-205 (2012).

P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. J. Ploehn, H.-C. zur Loye, Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage, Materials 2, 1697-1733 (2009).

A. Trajkovska Petkoska, Polymer Cholesteric Liquid Crystal Flakes – Their Electro Optic-Behaviour for Potential E-Paper Application, Verlag Dr. Müller, VDM ISBN 978-3-639-06439-1, Germany, 2008.

C. K. Chiang, R. Popielarz, Polymer composites with high dielectric constant, Ferroelectrics 275, 1-9 (2001).

L. Ramajo, M. Reboredo, M. Castro, Dielectric response and relaxation phenomena in composites of epoxy resin with BaTiO3 particles, Composites: Part A: Applied Science and Manufacturing 36(9), 1267-1274 (2005).

S. D. Cho, S. Y. Lee, J. G. Hyun, K. W. Paik, Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films, Journal of Materials Science-Materials in Electronics 16(2), 77-84 (2005).

H. M. Musal, H. T. Hahn, G. G. Bush, Validation of Mixture Equations for Dielectric-Magnetic Composites, Journal of Applied Physics 63(8), 3768-3770 (1988).

M. R. Anantharaman, S. Sindhu, S. Jagatheesan, K. A. Malini, P. Kurian, Dielectric properties of rubber ferrite composites containing mixed ferrites, Journal of Physics D-Applied Physics 32(15), 1801-1810 (1999).

R. Popielarz, C. K. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz, Macromolecules 34(17), 5910-5915 (2001).

M. T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, Z. Zhao, M. Nygren, Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics, Nanotechnology 15(9), 1113-1117 (2004).

T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, The properties of ferroelectric films at small dimensions, Annual Review of Materials Science 30, 263-298 (2000).

C. B. Ng, L. S. Schadler, R. W. Siegel, Synthesis and mechanical properties of TiO2-epoxy nanocomposites, Nanostructured Materials 12(1-4), 507-510 (1999).

A. Trajkovska-Petkoska, R. Varshneya, T. Z. Kosc, K. L. Marshall, S.D. Jacobs, Enhanced Electro-Optic Behavior for Shaped Polymer Cholesteric Liquid Crystal (PCLC) Flakes Made by Soft Lithography Adv. Funct. Mater., 15, 217 (2004).

A. Trajkovska-Petkoska, S. D. Jacobs, The Manufacture, characterization, and manipulation of polymer cholеsteric liquid crystal flakes and their possible applications, Journal of Materials Science and Engineering (A&B), A2 2, 137-151 (2012).

A. Trajkovska-Petkoska, Polymer cholesteric liquid crystal flakes as new candidates for display and sensor applications, NATO Science for Peace and Security Series-B: Physics and Biophysics: Nanotechnological Basis for Advanced Sensors, Springer, (2011).

T. Z. Kosc, K. L. Marshall, A. Trajkovska-Petkoska, E. Kimball, S. D. Jacobs, Progress in the Development of Polymer Cholesteric Liquid Crystal Flakes for Display Applications, Displays 25, 171–176 (2004).

A. Trajkovska-Petkoska, S. D. Jacobs, Effect of Different Dopants on Polymer Cholesteric Liquid Crystals, Mol. Cryst. Liq. Cryst., 495, 334 (2008).

A. Trajkovska-Petkoska, S. D. Jacobs, K. L. Marshall, T. Z. Kosc, Electrically Actuated Doped Polymer Flakes and Electrically Addressable Optical Devices Using Suspensions of Doped Polymer Flakes in a Fluid Host, U.S. 7,713,436 B1 (2010).

N. D. Cogger, N. J. Evans, An introduction to electrochemical impedance measurement, Technical report, No. 6, Solartron Analytical (1999).

Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation, Designation D 150-95, ASTM Standard.

P. E. Wellstead, Frequency response analysis, Technical report 10, Solartron Analytical, Control System Principles, Cheshire, UK (2003).




DOI: http://dx.doi.org/10.20450/mjcce.2015.629

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Anka Trajkovska

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.