Bimodal nanoindentation response of the (001) face in crystalline sodium saccharin dihydrate
DOI:
https://doi.org/10.20450/mjcce.2015.649Keywords:
Crystal engineering, microstructure, hydrate, saccharin, nanoindentationAbstract
The nanoindentation response of the (001) face of sodium saccharin dihydrate is examined. The structure can be demarcated into regular and irregular regions or domains. The regular domains have solid-like and the irregular ones have liquid-like characteristics. Therefore, these domains impart a microstructure to the crystal. The indent face (001) is prominently developed in this crystal and unambiguously presents the regular and irregular regions to nanoindention. Average values of elastic modulus and hardness show a distinct bimodal mechanical response. Such a response has been observed in the case of intergrown polymorphs of aspirin and felodipine. We examine two possible reasons as to why the responses could be for bimodal in this crystal. The first possibility could be that the two domains correspond to regions of the original dihydrate and a lower hydrate that is obtained by the loss of some water. The second possibility could be that these responses correspond to regular and irregular regions in the structure. Nanoindentation is a very useful technique in the characterization of molecular solids, as a complementary technique to X-ray crystallography, because it samples different length scales.
References
References
S. Varughese, M. S. R. N. Kiran, U. Ramamurty, G. R. Desiraju, Nanoindentation in crystal engineering: Quantifying mechanical properties of molecular crystals, Angew. Chem. Int. Ed., 52, 2701-2712 (2013).
M. S. R. N. Kiran, S. Varughese, U. Ramamurty, G. R. Desiraju, Effect of dehydration on the mechanical properties of sodium saccharin dihydrate with nanoindentation, CrystEngComm., 14, 2489-2493 (2012).
S. Varughese, M. S. R. N. Kiran, K. A. Solanko, A. D. Bond, U. Ramamurty, G. R. Desiraju, Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation, Chem. Sci., 2, 2236-2242 (2011).
C. Karunatilaka, D. K. Bučar, L. R. Ditzler, T. Friščić, D. C. Swenson, L. R. MacGillivray, A. V. Tivanski, Softening and hardening of macro- and nano-sized organic cocrystals in a single-crystal transformation, Angew. Chem. Int. Ed., 50, 8642-8646 (2011).
M. K. Mishra, S. Varughese, U. Ramamurty, G. R. Desiraju, Odd−even effect in the elastic modulii of α,ω-alkanedicarboxylic acids, J. Am. Chem. Soc., 135, 8121-8124 (2013).
S. Ghosh, A. Mondal, M. S. R. N. Kiran, U. Ramamurty, C. M. Reddy, The role of weak interactions in the phase transition and distinct mechanical behavior of two structurally similar caffeine cocrystals polymorphs studied by nanoindentation, Cryst. Growth Des., 13, 4435-4441 (2013).
S. C. Sahoo, S. B. Sinha, M. S. R. N. Kiran, U. Ramamurty, A. F. Dericioglu, C. M. Reddy, P. Naumov, Kinematic and mechanical profile of the self-actuation of thermosalient crystal twins of 1,2,4,5-tetrabromobenzene: A molecular crystalline analogue of a bimetallic strip, J. Am. Chem. Soc., 135, 13843-13850 (2013).
M. K. Mishra, G. R. Desiraju, U. Ramamurty, A. D. Bond, Studying microstructure in molecular crystals with nanoindentation: Intergrowth polymorphism in Felodipine, Angew. Chem. Int. Ed., 53, 13102-13105 (2014).
G. Kaupp, M. R. Naimi-Jamal, Mechanically induced molecular migrations in molecular crystals, CrystEngComm., 7, 402-410 (2005).
C. M. Reddy, G. R. Krishna, S. Ghosh, Mechanical properties of molecular crystals—applications to crystal engineering, CrystEngComm., 12, 2296-2314 (2010).
U. Ramamurty, J. Jang, Nanoindentation for probing the mechanical behavior of molecular crystals–a review of the technique and how to use it, CrystEngComm., 16, 12-23 (2014).
S. Ghosh, M. K. Mishra, S. B. Kadambi, U. Ramamurty, G. R. Desiraju, Designing elastic organic crystals: Highly flexible polyhalogenated N-benzylideneanilines, Angew. Chem. Int. Ed., DOI: 10.1002/ange.201410730 (2015).
G. R. Desiraju, Crystal Engineering. The Design of Organic Solids; Elsevier: Amsterdam, 1989.
G. R. Desiraju, J. J. Vittal, A. Ramanan, Crystal Engineering– A Text Book, World Scientific, 2011.
G. R. Desiraju, Crystal engineering: A holistic view, Angew. Chem. Int. Ed., 46, 8342-8356 (2007).
G. R. Desiraju, Crystal engineering: From molecule to crystal, J. Am. Chem. Soc., 135, 9952- 9967 (2013).
C. Fahlberg, I. Remsen, Ueber die Oxydation des Orthotoluolsulfamids, Ber. Dtsch. Chem. Ges., 12, 469-473 (1879).
M. H. Defournel, Metallic "saccharinates", Bull. Soc. Chim. Fr., 25, 322- 329 (1901).
P. Naumov, G. Jovanovski, S. Abbrent, L. Tergenius, Thermal behavior of the saccharinates of K+, Na+, Rb+, Cs+ and NH4+: structural inferences, Thermo-chim. Acta, 359, 123-130 (2000).
G. Jovanovski, O. Grupče, B. Šoptrajanov, The O-H and O-D stretching vibrations in the hydrates of sodium and potassium saccharinate: spectra-structure correlations, J. Mol. Struct., 219, 61-66 (1990).
P. Naumov, G. Jovanovski, O. Grupče, B. Kaitner, A. D. Rae, S.W. Ng, Solid-state structure and temperature/evacuation-induced dehydration of sodium saccharinate 1.875 hydrate, Angew. Chem. Int. Ed., 44, 1251-1254 (2005).
R. Banerjee, P. M. Bhatt, M. T. Kirchner, G. R. Desiraju, Structural studies of the system Na(saccharinate)•nH2O: a model for crystallization, Angew. Chem. Int. Ed., 44, 2515-2520 (2005).
W.C Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564-1583 (1992).
W.C Oliver, G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res.,19, 3-20 (2004).
N. Blagden, R. J. Davey, Polymorph Selection: Challenges for the Future, Cryst. Growth Des., 3, 873-885 (2003).
R. Dubey, M. S. Pavan, G. R. Desiraju, Structural landscape of benzoic acid: using experimental crystal structures of fluorobenzoic acids as a probe, Chem. Commun., 48, 9020-9022 (2012).
R. Dubey, M. S. Pavan, T. N. G. Row, G. R. Desiraju, Crystal landscape in the orcinol:4,4'-bipyridine system: synthon modularity, polymorphism and transferability of multipole charge density parameters, IUCrJ, 1, 8-18( 2014).
R. Dubey, G. R. Desiraju, Combinatorial Crystal Synthesis: Structural Landscape of Phloroglucinol:1,2-bis(4-pyridyl)ethylene and Phloroglucinol:Phenazine, Angew. Chem. Int. Ed., 48, 13178–13182 (2014).
R. Dubey, G. R. Desiraju, Exploring the crystal structure landscape with a heterosynthon module: Fluorobenzoic acid: 1, 2-bis (4-pyridyl) ethylene 2: 1 cocrystals, Cryst. Growth Des., DOI: 10.1021/cg501553m (2014).
G. Jovanovski, B. Kamenar, Two ionic saccharinates: (1a) sodium saccharinate 2/3 hydrate, C7H4NO3SNa.2/3H2O; (1b) magnesium disaccharinate heptahydrate, (C7H4NO3S)2Mg.7H2O, Cryst. Struct. Commun., 11, 247- 255 (1982).
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.