A century of X-ray crystallography and 2014 international year of X-ray crystallography


  • Biserka Kojić-Prodić Rudjer Bošković Institute, Zagreb




Keywords, centennial anniversary of X-ray crystallography, discovery of X-ray crystallography – dazzling history, highlights, X-ray structure analysis and its prospect


The 100th anniversary of the Nobel prize awarded to Max von Laue in 1914 for his discovery of diffraction of X-rays on a crystal marked the beginning of a new branch of science - X-ray crystallography. The experimental evidence of von Laue's discovery was given by physicists W. Friedrich and P. Knipping in 1912.  In the same year W. L. Bragg described the analogy between X-rays and visible light and formulated the Bragg's law, a fundamental relation, that connected the wave nature of X-rays and fine structure of a crystal at atomic level. In 1913 the first simple diffractometer was constructed and structure determination started by the Braggs, father and son. In 1915 their discoveries were awarded by Nobel prize in physics. Since then, X-ray diffraction has been basic method for determination of three-dimensional structures of synthetic and natural compounds. The three-dimensional structure of molecule defines its physical, chemical, and biological properties. All over the past century significance of X-ray crystallography has been recognized by about forty Nobel prizes. The examples of X-ray structure analysis, of simple crystals of rock salt, diamond and graphite, and then of complex biomolecules such as B12-vitamin, penicillin, haemoglobin/myoglobin, DNA, and biomolecular complexes such as viruses, chromatin, ribozyme, and other molecular machines, have illustrated the development of the method. Among these big discoveries double helix DNA structure is epochal one of 20th century. These discoveries together with many others within X-ray crystallography completely changed our views and helped to be developed different new fields of science such as molecular genetics, biophysics, structural molecular biology, material science, and many others. During the last decade, an implementation of free electron X-ray lasers, a new experimental tool, has opened up femtosecond dynamic crystallography. This highly advanced methodology enables to solve the structures and dynamics of the most complex biological assemblies involved in a cell metabolism. The advancements of science and technology over 20th and 21stcenturies are of great influence on our views in almost all human activities. The importance of X-ray crystallography for science and technology advocates for its high impact on a wide area of research and declares it as highly interdisciplinary science. Briefly saying, crystallography defines the shape of our modern world.

The essay is far from being complete and it is concentrated on single crystal diffraction. The wide area of X-ray crystallography hardly can be reviewed in a single article. However, it highlights the most striking examples illustrating some of the milestones over past century.



E. S. Fedorov, Nature and Science, Priroda, 4, 425–432 (1917).

W. C. Röntgen, Über eine neue Art von Strahlen, Sitzungber. Phys. Med. Ges. Würzburg 137, 132–141 (1895).

M. Laue, Eine quantitative Prüfung der Theorie für die Interferenze-Erscheinungen bei Röntgenstrahlen, Sitzungsber. K. Bayer. Akad. Wiss. Muenchen, 363–373 (1912)

W. Friedrich, P. Knipping, and M. Laue, Interferenz-Erscheinungen bei Röntgenstrahlen, Sitzungsber. K. Bayer. Akad. Wiss. Muenchen, 303–322 (1912).

W. L. Bragg, The diffraction of short electromagnetic waves by a crystal, Nature, 90, 410–410 (1912).

W. L. Bragg, The Structure of Some Crystals as Indi-cated by Their Diffraction of X-rays, Proc. R. Soc. Lond. A, 89, 248–277 (1913).

W. H. Bragg, W. L. Bragg, The Structure of diamond, Proc. R. Soc. London A 89, 277–291 (1913).

W. H. Bragg, W. L.Bragg, The reflection of X-rays by crystals, Proc. R. Soc. London A 88, 428–438 (1913).

W. H. Bragg, X-rays and crystal structure, Philos. Trans. R. Soc. London, A 215, 253–274 (1915).

B. Kojić-Prodić, J. Kroon, (Bio)crystallography at the turn of Millenium, Croat. Chem. Acta, 74, 1–35 (2001) and references therein.

B. Kojić-Prodić, K. Molčanov, Stogodišnjica rendgen-ske kristalografije, Kem. Ind. 62, 247–260 (2013).

D. Swarzenbach, The success story of crystallography, Acta Cryst. A68, 57–67 (2012).

D. Bourgeois, F. Schotte, M. Brunori, B. Vallone, Time-resolved methods in biophysics. 6. Time resolved Laue crystallography as a tool to investigate photo activated protein dynamics, Photochem. Photobiol. Sci. 6, 1047–1056 (2007).

M. R. V. Jørgensen, V. R. Hathwar, N. Bindzus, N. Wahlberg, Y.-S. Chen, J. Overgaard, B. B. Iversen, Contenporary X-ray electron-density studies using synchrotron radiation IUCrJ 1, 267–280 (2014).

R. F. Stewart, Electron population analysis with rigid pseudoatoms, Acta Cryst. A32, 565–574 (1976).

F. L. Hirshfeld, Bonded-Atom Fragments for Describ-ing Molecular Charge Densities, Theor. Chim. Acta 44, 129–138 (1977).

N. K. Hansen, P. Coppens, Testing aspherical atom refinements on small-molecule data sets, Acta Cryst. A34, 909–921 (1978).

G. R. Desiraju, J. J. Vittal, A. Ramanan, Crystal Engi-neering, A Textbook, World Scientific Publishing, Singapore, 2011.

M. Deutsch, B. Gillon, N. Claiser, J.-M. Gillet, C. Lecomte, M. Souhassou, First spin-resolved electron distribution in crystals from combined polarized neutron and X-ray diffraction experiments, IUCrJ 1, 194–199 (2014).

H. N. Chapman, Protein crystallography using X-ray free-electron lasers, SPIE Newsroom, 10.1117/ 2.1201302.004713.

H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. E. Kirian, A. Aquila, M. S. Hunter, et al., Femtosecond X-ray protein nanocrystallography, Nature, 470, 73–77 (2011).

W. L. Bragg, X-ray crystallography, Sci. Am. 219, 58–70 (1968).

J. A. Le Bel, Bull. Soc. Chim. Fr. 22, 337–347 (1874).

J. H. van't Hoff, La chimie dans l'espace, Bazendijk, Rotterdam, 1875.

E. Fischer, Ber. Dtsch. Chem. Ges. 24 (1891) 1836–1845.

E. Fischer, Ber. Dtsch. Chem. Ges. 24, 2683–2687 (1891).

J. M. Bijvoet, Phase determination in direct Fourier-synthesis of crystal structure, Proc. K. Ned. Akad. Wet. 52, 313–314 (1949).

J. C. Randel, F. C. Niestemski, A. R. Botello-Mendez, W. Mar, G. Ndabashimiye, S. Melinte, J. E. P, Dahl, R. M. K. Carison, E. D. Butova, A. A. Fokin, P. R. Schreiner, J.-Ch. Charlier, H. C. Manoharan, Unconventional molecule-resolved current rectification in diamond-fullerene hybrids, Nature Commun. 5:4877 doi 10.1038/ncomms5877 (2014).

J. D. Bernal, The structure of graphite, Proc. R. Soc. London, A 106, 749–773 (1924).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field in atomically thin carbon films, Science, 306, 666-669 (2004).

K. Lonsdale, The structure of the benzene ring in C6(CH3)6, Proc. R. Soc. Lond., A, 123, 494–515 (1929).

D. Crowfoot Hodgkin, C. W. Bunn, B. W. Rogers-Low, A. Turner-Jones, The X-ray Crystallographic Investigation of the Structure of Penicillin, Oxford University Press, Oxford, 1949.

A. L. Patterson, Fourier series method for the determination of the components of interatomic distances in crystals, Phys. Rev. 46, 372–376 (1934).

D. W. Green, V. M. Ingram, M. F. Perutz, The structure of haemoglobin. IV. Sign determination by the isomorphous replacement method, Proc. Royal Soc. Lond., A 225, 287–307 (1954).

M. F. Perutz, M. G. Rossmann, A. F. Cullis, H. Muir-head, G.Will, A. C. T North, Structure of hemoglobin: a three-dimensional Fourier synthesis at 5.5 Å resolu-tion, obtained by X-ray analysis. Nature 185, 416–422 (1960).

R. Franklin, R. G. Gosling, Molecular structure for deoxypentose nucleic acid, Nature, 171, 740–741 (1953).

J. D.Watson, F. H. C. Crick, A Structure for deoxyri-bose nucleic acid, Nature 171, 737–738 (1953).

H. Hauptman, J. Karle, Solution of the Phase Problem. I. The Centrosymmetric Crystal, ACA Monograph No. 3, Polycrystal Book Service, 1953.

S. C. Harrison, A. J. Olson, C. E. Schutt, F. K. Winkler, G Bricogne, Tomato Bushy stunt virus at 2.9 Å resolution, Nature, 276, 368–373 (1978).

D. L. D. Caspar, A. Klug, Physical principles in the construction of regular viruses, Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

A. Klug, J. T. Finch, R. E. Franklin, The structure of turnip yellow mosaic virus: X-ray diffraction studies, Biochim. Biophys. Acta 25, 242–251 (1957).

F. Thoma, T. Koller, A. Klug, Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427(1979).

G. R. Nemero, P. L. Stewart, V. S. Reddy, V. S., Structure of human adenovirus, Curr. Opin. Virol. 2, 115–121 (2012).

R. D. Kornberg, Chromatin structure: a repeating unit of histone and DNA, Science, 184, 868–871 (1974).

R. D. Kornberg, J. O. Thomas, Chromatin structure; Oligomers of the histones, Science, 184, 865–868 (1974).

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sar-gent, T. J. Richmond, Crystal Structure of the nu-cleosome core particle at 2.8 Å resolution, Nature 389, 251–260 (1997).

P. Cramer, D. A. Bushnell, R. D. Kornberg, Structural basis of transcription: RNA polymerase II at 2.8 Å resolution, Science 292, 1863–1876 (2001).

The Noble Prize in Chemistry. URL: www.nobelprize. org/nobel_prizes/chemistry/

B. R. Kobilka et al., Crystal structure of the β2 adrenergic receptor – Gs protein complex, Nature, 477, 549–555 (2011).

A. de Lean, J. Stadel, R. L. Lefkowitz, A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor, J. Mol. Chem. 255, 7108–71177 (1980).

V. Cherezov et al., Serial femtosecond crystallography of G protein-coupled receptors, Science 342, 1521–1524 (2013).

D. Kleppner, Physics in 50 years, Phys. Today 51, 11–11 (1998).

N. Klauss, W.-D. Schubert, O. Klukas, P. Fromme, H. T. Witt, W. Saenger, Photosystem I at 4 Å resolution represents the first structural model of aa joint photo-synthetic reaction centre and core antenna system, Nature Struct. Biol. 3, 965–973 (1996).

I. Grotjohann, P. Fromme, Structure of cyanobacterial photosystem I, Photosynthesis Research 85 51–72 (2005).

M. Watanabe, D. A. Semchonok, M. T. Webber-Birungi, S. Ehira, K. Kondo, R. Narikawa, M. Ohmora, E. J. Boekema, M. Ikeuchi, Attachement of phycobilisomes, In antenna-photosystem I Supercomplex of cyanobacteria, PNAS 111, 2512–2517 (2014).

K. N. Ferreira, T. M. Iverson, K. Maghlaoul, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science, 303, 1831–1838 (2004).

M. Suga, F. Akkita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses, Nature 517, 99–103 (2015).

K. Lasker, F. Förster, S. Bohm, T. Walzthoeni, E. Villa, P. Unverdorben, F. Beck, R. Aebersold, A. Sali, W. Baumeister, Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach, PNAS, 109, 1380–1387 (2012).

E. Callaway, Data bank struggles as protein imaging ups its game, Nature, 514, 416 (2014).

G. Kleywegt et al., 3D cellular context for the macro-molecular world, Nature Struct. Mol. Biol. 21, 841–845 (2014).

P. J. Dziubańska, U. Derwenda, J. F. Ellena, D. A. Engel, Z. S. Derewenda, The structure of the C-terminal domain of the Zaire ebola virus nucleoprotein, Acta Cryst. D70, 2420–2429 (2014).

J.-P. Jullien, A. Cupo, D. Sok, R. L. Stanfield, D. Lyumkis, M. C. Deller, P.-J. Klasse, D. R. Barton, R. W. Sanders, J. P. Moore, A. B. Ward, I. A. Wilson, Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer, Science, 342, 1477–1483 (2013).

L. Lu, T. Xu, W. Chen, E. S. Landry, L. Yu, Nature Photonics, 8, 716–722 (2014).

M. Shankla, A. Aksimentiev, Conformational transi-tions and stop-and-go nanopore transport od single-stranded DNA on charged graphene, Nature Commun. 5, 5171 (2014).




How to Cite

Kojić-Prodić, B. (2015). A century of X-ray crystallography and 2014 international year of X-ray crystallography. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 19–32. https://doi.org/10.20450/mjcce.2015.663



Structural Chemistry