Structural and electrical properties of geopolymer materials based on different precursors (kaolin, bentonite and diatomite)

Ljiljana M Kljajević, Zuzana Melichova, Marija Stojmenović, Bratislav Ž Todorović, Vladimir B Pavlović, Nada Čitaković, Snežana S Nenadović

Abstract


Geopolymers (GP) were successfully synthesized from metabentonite (MB), metadiatomite (MD) and metakaolinite (MK). Characterization of their phase structure and microstructure was performed by XRD, FTIR, SEM/EDX methods. A SEM micrograph of GPMD shows a homogeneous surface with some longitudinal cavities in the gel, and it is significantly different from the micrographs of the other two geopolymer samples, GPMB and GPMK. A considerable amount of unreacted particles, as well as the presence of pores in the geopolymer matrix of GPMK and GPMD, indicate an incomplete reaction in the system. Aluminosilicate inorganic polymers, geopolymers, are quasi solid electrolytes which possess a high electrical conductivity at room temperature in relation to materials of similar chemical composition. The highest conductivity was found for the sample obtained from GPMK, amounting to 2.14 × 10–2 Ω–1cm–1at 700 ºC. The corresponding activation energies of conductivity for this sample amounted to 0.33 eV in the temperature range of 500–700 ºC. The geopolymer synthesized from metakaolin has good ionic conductivity values, which recommends it for use as an alternative material for an SOFC (Solid Oxide Fuel Cell).


Keywords


metabentonite, metakaolin, metadiatomite, geopolymer, electrical conductivity

Full Text:

PDF

References


J. Davidovits, Geopolymers-inorganic polymeric new materials, J. Therm. Anal. 37 (8), 1633–1656 (1991).

X-M. Cui, G-J Zheng, Y. C. Han, F. Su, J. Zhou, A study on electrical conductivity of chemosynthetic Al2O3-2SiO2 geopolymer materials. J. Power Sources 184, 652–656 (2008). DOI: 10.1016/j.jpowsour.2008.03.021

R. M. Novais, M. P. Seabra, J. A. Labrincha, Porous geopolymer spheres as novel pH buffering materials. J. Clean. Prod. 143, 1114–1122 (2017).

DOI: https://doi.org/10.1016/j.jclepro.2016.12.008

W. Lerdprom, C. Li, D. D. Jayaseelan, S. J. Skinner, W. E. Lee, Temperature dependence of electrical conductivity of a green porcelain mixture, J. Eur. Ceram. Soc. 37, 343–349 (2017).

DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.08.019

T. Yoshino, Laboratory electrical conductivity measure-ment of mantle minerals, Surv. Geophys. 31 (2), 163–206 (2010). DOI: 10.1007/s10712-009-9084-0

K. Noritomi, Studies on the change of electrical conduc-tivity with temperature of a few silicate minerals, Sci. Rep. Tohoku Univ. Ser. 5 Geophys., 6 (2), 119 (1954 ).

G. Alberti, M. Casciola, in Proton Conductors Colomban, Ph., (Ed.), Cambridge: Cambridge University Press, 1992, pp. 238.

Y.-I. Park, M. Nagai, J.-D. Kim, K. Kobayashi, Inorganic proton-conducting gel glass/porous alumina nanocomposite, J. Power Sources. 137, 175–182 (2004). DOI: 10.1016/j.jpowsour.2004.03.047

H. Bae, J. Choi, G. M. Choi, Electrical conductivity of Gd–doped ceria film fabricated by aerosol deposition method, Solid State Ionics., 236, 16–21 (2013).

DOI: https://doi.org/10.1016/j.ssi.2013.01.022

M. Kahlaoui, S. Chefi, A. Inoubli, A. Madani, C. Chefi, Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+, and Eu3+ citric acid-nitrate prepared sa-marium-doped ceria ceramics, Ceram. Int. 39, 3873–3879 (2013).

DOI: https://doi.org/10.1016/j.ceramint.2012.10.230

J. Jiang, W. Shen, J. L. Hertz, Structure and ionic con-ductivity of nanoscale gadolinia–doped ceria thin films, Solid State Ionics, 249–250, 139–143 (2013).

DOI: https://doi.org/10.1016/j.ssi.2013.08.003

E. Y. Pikalova, A. A. Murashkina, V. I. Maragou, A. K. Demin, V. N. Strekalovsky, P. E. Tsiakaras, CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices, Int. J. Hydrogen Energ. 36, 6175–6183 (2011).

DOI:10.1016/j.ijhydene.2011.01.132

J. Prado–Gonjal, R. Schmidt, J. Espindola–Canuto, P. Ramos–Alvarez, E. Moran, Increased ionic conductivity in microwave hydrothermally synthesized rare–earth doped ceria Ce1−xRExO2−(x/2), J. Power Sources, 209, 163–171 (2009). DOI: 10.1016/j.jpowsour.2012.02.082

M. Stojmenović, S. Bosković, D. Bučevac, M. Prekajski, B. Babić, B. Matović, S. Mentus, Electrical characteriza-tion of multidoped ceria ceramics, Ceram. Int. 39, 1249–1255 (2013).

DOI: https://doi.org/10.1016/j.ceramint.2012.07.055

M. Stojmenović, S. Bošković, M. Žunić, J. A. Varela, M. Prekajski, B. Matović, S. Mentus, Electrical properties of multidoped ceria, Ceram. Int., 40, 9285–9292 (2014). DOI: https://doi.org/10.1016/j.ceramint.2014.01.151

M. Stojmenović, S. Bošković, M. Žunić, B. Babić, B. Matović, D. Bajuk-Bogdanović, S. Mentus, Studies on structural, morphological and electrical properties of Ce1-xErxO2-δ (x = 0.05–0.20) as solid electrolyte for IT–SOFC, Mater. Chem. Phys., 153, 422–431 (2015).

DOI https://doi.org/10.1016/j.matchemphys.2015.01.036

M. Stojmenović, M. Žunić, J. Gulicovski, D. Bajuk–Bogdanović, I. Holclajtner–Antunović, V. Dodevski, S. Mentus, Structural, morphological, and electrical proper-ties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells, J. Mater. Sci. 50, 3781–3794 (2015).

DOI https://doi.org/10.1016/j.ceramint.2016.06.007

N. Tian, J. Yu, Y. Deng, G. Li, X. Zhang, Electrical properties of Ce0.85Sm0.15O1.925–Fe2O3 electrolytes for IT-SOFCs, J. Alloy. Compd. 655, 215–219 (2016).

DOI https://doi.org/10.1016/j.jallcom.2015.09.162

M. R. Kosinski, R. T. Baker, Preparation and property–performance relationships in samarium-doped ceria na-nopowders for solid oxide fuel cell electrolytes, J. Power Sources 196, 2498–2512 (2011).

DOI: https://doi.org/10.1016/j.jpowsour.2010.11.041

D. Pérez-Coll, P. Núñez, J. R. Frade, The role of SiO2 and sintering temperature on the grain boundary proper-ties of Ce0.8Sm0.2O2−δ, J. Power Sources 196, 8383–8390 (2011). DOI: https://doi.org/10.1016/j.jpowsour.2011.06.075

J. Wright, A. V. Virkar, Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen par-tial pressure, J. Power Sources, 196, 6118–6124 (2011).

DOI: https://doi.org/10.1016/j.jpowsour.2011.03.043

R. Waster, R. Hagenbeck, Grain boundaries in dielectric and mixed-conducting ceramics, Acta Mater. 48, 797–825 (2000). DOI: https://doi.org/10.1063/1.4936782

S. Nenadović, Lj. Kljajević, M. Nešić, M. Petković, K. Trivunac, V. Pavlović, Structure analysis of geopolymers synthesized from clay originated from Serbia, Environ Earth Sci, 76–79 (2017).

DOI: 10.1007/s12665-016-6360-4

Lj. Kljajević, S. Nenadović, M. Nenadović, N. Bundaleski, B. Todorović, V. Pavlović and Z. Rakočević, Structural and chemical properties of thermally treated geopolymer samples, Ceram Inter 43, 9, 6700–6708 (2017).

DOI https://doi.org/10.1016/j.ceramint.2017.02.066

K. Trivunac, Lj. Kljajević, S. Nenadović, J. Gulicovski, M. Mirković, B. Babić, S. Stevanović, Microstructural characterization and adsorption properties of alkali activated materials based on metakaolin, Sci. Sinter., 48, 209–220 (2016). DOI: 10.2298/SOS1602209T

P. Duxson, G. C. Lukey, F. Separovic, J. S. J. van Deventer, Effect of alkali cations on aluminum incorpora-tion in geopolymeric gels, Ind. Eng. Chem. Res. 44 (4), 832–839 (2005). DOI: 10.1021/ie0494216

P. Innocenzi, Infrared spectroscopy of silica sol-gel films: A spectra-microstructure overview, J. Non Cryst. Solids, 316, 309–319 (2003) PII: S 0022-3093(02) 01637–X

C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, L. Börjesson, Structure of mixed alkali/alkaline-earth silicate glasses from neutron diffraction and vibra-tional spectroscopy, Phys. Rev. B 72, 064206 (2005). DOI: 10.1103/PhysRevB.72.064206

V. F. F. Barbosa, K. J. D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull. 38, 319–331 (2003 ). PII: S 0025-5408(02)01022-X

D. Zaharaki, K. Komnitsas, V. Perdikatsis, Use of analyt-ical techniques for identification of inorganic polymer gel composition, J. Mater. Sci. 45, 2715–2724 (2010). DOI: https://doi.org/10.1007/s10853-010-4257-2

M. Roode, R. T. Hemings, Development of a unified Theory for Predicting Behavior of Glassy Waste Prod-ucts) CANMET (Canada) Contract report No. ISQ83-00162, July 1985, cited in Mehta

S. Andrejkovičová, I. Janotka, P Komadel, Evaluation of geotechnical properties of bentonite from Lieskovec deposit , Slovakia, Appl. Clay Sci. 38, 297–303 (2008). DOI:10.1016/j.clay.2007.04.004

W. K. W. Lee, J. S. J. van Deventer, Structural reorgani-sation of class F fly ash in alkaline silicate solutions, Col-loids Surf.: Physicochemical and Engineering Aspects, 211(1), 49–66 (2002) PII: S 0927-7757(02) 00237–6

M. Pires, X. Querol, Characterization of Candiota (South Brazil) coal and combustion by-product, Int. J. Coal Geol. 60, 57–72 (2004).

DOI: 10.1016/j.coal.2004.04.003

J. L. Provis, J. S. J. van Deventer, Direct measurement of the kintects of geopolymerisation by in-situ energy dis-persive X-ray diffractometry. J. Mater. Sci. 42 (9), 2974–2981 (2007). DOI: 10.1007/s10853-006-0548-z

Z. Sarbak, A. Stanczyk, M. Kramer-Wachowiak, Charac-terization of surface properties of various fly ashes, Pow. Techn. 145, 82–87 (2004).

DOI:10.1016/j.powtec.2004.04.041

R. R. Lloyd, J. L. Provis, J. S. J. van Deventer, Micros-copy and microanalysis of inorganic polymer cements 1: The gel binder J. Mater.Sci. 44 (2), 620–631 (2009). DOI: https://doi.org/10.1007/s10853-008-3078-z

P. de Silva, K. Sagoe-Crentsil, V. Sirivivatnanon, Kinet-ics of geopolymerization : role of Al2O3 and SiO2. Cem. Concr. Res. 37, 512–518 (2007).

DOI:10.1016/j.cemconres.2007.01.003

S. H. Jensen, A. Hauch, P. V. Hendriksen, M. Mo-gensen, N. Bonanos, T. Jacobsen, A method to separate process contributions in impedance spectra by variation of test conditions, J. Electrochem. Soc. 154, B1325–B1330 (2007). DOI: 10.1149/1.2790791




DOI: http://dx.doi.org/10.20450/mjcce.2019.1678

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Ljiljana M Kljajević, Zuzana Melichova, Marija Stojmenović, Bratislav Todorović, Vladimir Pavlović, Nada Čitaković, Snežana Nenadović

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.