The influence of thermodynamic parameters on alkaline activator of geopolymers and structure of geopolymers


  • Marija Ivanović Department of Materials Science, ,,Vinča“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade
  • Snežana Nenadović Department of Materials Science, "Vinča"Institute of Nuclear Sciences – National Institute of thе Republic of Serbia, University of Belgrade, Belgrade
  • Vera P Pavlović University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade
  • Ivona Radović University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Mirjana Kijevčanin University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade
  • Vladimir B Pavlović Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, University of Belgrade, Belgrade
  • Ljiljana Kljajević Department of Materials Science, "Vinča"Institute of Nuclear Sciences –National Institute of thе Republic of Serbia, University of Belgrade, Belgrade



Geopolymer, Density, Viscosity, Speed of sound, Refractive index, FTIR, Raman Spectroscopy


Thermodynamic parameters (densities, viscosities, speed of sound, and refractive index) of four series of alkaline activators were determined over the temperature range from 15 to 60 °C for the process of geopolymerization. Mixtures of Na2SiO3and NaOH of different molar concentrations (from 2M to 8M with step 2) were used as an alkaline activator. The sample with the highest NaOH concentrationalso shows the highest values of all thermodynamic parameters.Metakaolin, obtained by calcination of kaolin at 750 °C, was used as the starting material.The samples were characterized by X-ray diffraction (XRD),FTIR and Raman spectroscopy, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-Ray (EDX) Spectroscopy. Results of FTIR analysis correlated with results of Raman Spectroscopy. Due to the polymerization process, the changes in the phonon spectrum were confirmed. The different concentra-tions of activators do not notably change the Si/Al ratio.


J. Davidovits, Geopolymers. Journal of Thermal Analy-sis, 37 (8), 1633–1656 (1991).


J. Davidovits, Geopolymer chemistry and sustainable development, Conference at: Saint-Quentin, France. Insti-tut Géopolymère / Geopolymer Institute, Volume: Ses-sion 1, 9–17 (2005).

J. Davidovits, Geopolymers and geopolymeric new mate-rials, Journal of Thermal Analysis, 35 (2), 429–441 (1989).

E. Gartner, Industrially interesting approaches to "low-CO2" cements, Cem. Concr. Res., 34, 1489–1498 (2004). DOI: 10.1016/j.cemconres.2004.01.021

H. Xu, J. S. J. Van Deventer, The geopolymerisation of alumino-silicate minerals’, International Journal of Min-eral Processing, 59, 247 (2000).


J. Davidovits, Geopolymers Chemistry and Applications, Institut Geopolymere: Saint-Quentin, France, Edition: 2nd (2008).

S. Nenadović, G. Musci, Lj. Kljajević, M. Mirković, M. Nenadović, F. Kristaly, I. Vukanac, Physicochemical, minerological and radiological properties of red mud samples as secondary raw materials, Nuclear Technology and Radioactivity Protection, 32 (3), 261–266 (2017). DOI:10.2298/NTRP1703261N

W. M. Kriven, J. L. Bell, M. Gordon, Microstructure and microchemistry of fully-reacted geopolymers and geopol-ymer matrix composites, Ceram. Trans., 153, 227–250 (2004).

E. Landi, V. Medri, E. Papa, J. Dedecek, P. Klein, P. Benito, A. Vaccari , Alkali bonded ceramics with hierar-chical tailored porosity, Appl. Clay Sci., 73, 56–64 (2013). DOI: 10.1016/j.clay.2012.09.027

O. Bortnovsky, J. Dědeček, Z. Tvarůžková, Z. Sobalík, J. Šubrt, Metal ions as probes for characterization of geo-polymer materials, J. Am. Ceram. Soc., 91, 3052–3057 (2008).


J. L. Provis, J. S. J. van Deventer, 1st edition Geopoly-mers: Structures, Processing, Properties and Industrial Applications, Chapter 4: Activating solution chemistry for geopolymers, Woodhead Publishing, 2009.

B. Fabbri, S. Gualtieri, C. Leonardi, Modifications in-duced by the thermal treatment of kaolin and determina-tion ofreactivity of metakaolin, Applied Clay Science 73, (2013).


N. Mladenović, Lj. Kljajević, S. Nenadović, M. Ivanović, B. Čalija, J. Gulicovski, K. Trivunac, The applications of new inorganic polymer for adsorption cadmium from waste water, Journal of Inorganic and Organometallic Polymers and Materials, 554 (2020). DOI: 10.1007/s10904-019-01215-y

K. Trivunac, Lj. Kljajević, S. Nenadović, J. Gulicovski, M. Mirković, B. Babić, S. Stevanović, Microstructural characterization and adsorption properties of alkali-activated materials based on metakaolin, Science of Sinter-ing, 48 (2), 209–220 (2016).

DOI: 10.2298/SOS1602209T

X. Yang, W. Zhu, Q. Yang, The viscosity properties of sodium silicate solutions, Journal of Solution Chemistry, 37, 73–83 (2008). DOI: 10.1007/s10953-007-9214-6

J. G. Vail, Soluble Silicates: Their Properties and Uses, New York, Reinhold (1952).

M. Singha, L. Singh, Vibrational spectroscopic study of muscovite and biotite layered phyllosilicates, Indian Journal of Pure and Applied Physics, 54, 116–122 (2016).

L. Zhang, F. Zhang, M. Liu, X. Hu, Novel sustainable geopolymer based syntactic foams: An eco-friendly alter-native to polymer based syntactic foams, Chemical Engi-neering Journal, 313, 74–82 (2017).

DOI: 10.1016/j.cej.2016.12.046

E. Izci, Structural and dielectric properties of acid activat-ed metakaolinite and kaolinite, 11th GeoRaman Interna-tional Conference, 2014.

H. Aguiar, J. Serra, P. González, B. León, Structural study of sol–gel silicate glasses by IR and Raman spec-troscopies, Journal of Non-Crystalline Solids, 355, 475–480 (2009). DOI: 10.1016/j.jnoncrysol.2009.01.010

S. Y. R López, J. S. Rodríguez, Microstructural charac-terization of sanitary ware by infrared and Raman spec-troscopy, the role of vitreous matrix on properties, Jour-nal of Ceramic Processing Research, Vol. 16, No. 1, 162–168 (2015).

T. Kosor, B. Nakic-Alfirević, S. Svilović, Geopolymer depolymerization index, Vibrational Spectroscopy, 86, 143–148 (2016). DOI:10.1016/j.vibspec.2016.07.004

L. Vidal, A. Gharzouni, E. J. Joussein, M. Colas, J. Cor-nette, J. Absi, S. Rossignol, Determination of the polymerization degree of various alkaline solutions: Ra-man investigation, Journal of Sol-Gel Science and Tech-nology, Springer Verlag, 83 (1), 1–11 (2017).

DOI: 10.1007/s10971-017-4394-z.

L. Vidal, E. Joussein, M. Colas, J. Cornette, J. Sanz, I. Sobrados, J. L. Gelet, J. Absi, S. Rossignol, Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study, Colloids and Surfaces A: Physicochem. Eng. Aspects, 503, 101–109 (2016).


B. O. Mysen, D. Virgo, I. Kushiro, The structural role of aluminum in silicate melts  a Raman spectroscopic study at 1 atmosphere, American Mineralogist, 66, 678–701 (1981).

Y. Yu, G. Xiong, C. Li, F. S. Xiao, Characterisation of aluminosilicate zeolites by UV Raman spectroscopy, Mi-croporous and Mesoporous Materials, 46, 23–34 (2001).

K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy, RSC Adv. 5 (2015) 67583–67609.


P. K. Dutta, D. C. Shieh, Raman spectral study of the composition of basic silicate solutions, Applied Spectros-copy, 39 (2), 343–346 (1985).

S. Rossano, B. Mysen, Raman spectroscopy of silicate glasses and melts in geological systems, EMU Notes in Mineralogy, Vol. 12, Chapter 9, 319–364 (2012).

C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D. T. Bowron, L. Börjesson, Structure of mixed alkali/alkaline-earth silicate glasses from neutron diffraction and vibra-tional spectroscopy, Phys Rev B 2005, 72:064206. DOI: 10.1103/PhysRevB.72.064206

J. L. Provis, C. A. Rees, Geopolymer synthesis kinetics. In: Provis, J. L. and Van Deventer, J. S. J. (Eds.): Geo-polymers: Structures, Processing, Properties and Indus-trial Applications, Woodhead Publishing, Abingdon UK, 2009, pp. 118–136.

P. Innocenzi, Infrared spectroscopy of silica sol-gel films: A spectra- microstructure overview, J. Non-Cryst. Solids, 316, 309–319 (2003).


A. Fernandez-Jimenez, A. Palomo, Mid-infrared spectro-scopic studies of alkaline activated fly ash structure. Mi-cropor Mesopor Mater, 86, 207–214, (2005).


M. Alkan, C. Hopa, Z. Yilmaz, H. Guler, The effect of alkali concentration and solid/liquid ratio on the hydro-thermal synthesis of zeolite NaA from natural kaolinite, Microporous Mesoporous Materials, 86, 176–184 (2005).

X. Zhao, C. Liu, L. Wanga, L. Zuo, Q. Zhu, W. Ma, Physical and mechanical properties and micro characteris-tics of fly ash based geopolymers incorporating soda res-idue, Cement and Concrete Composites, 98, 125–136 (2019).

N. Lee, H. R. Khalid, H. Lee, Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment, Microporous Mesoporous Mater., 229, 22–30 (2016).


J. L. Provis, G. C. Lukey, J. S. Van Deventer, Do geo-polymers actually contain nanocrystalline zeolites? A reexamination of existing results, Chem. Mater., 17, 3075–3085 (2005).


A. Palomo, F. Glasser, Chemically-bonded cementitious materials based on metakaolin, British Ceramic Transac-tions, 91, 107–112 (1992).

S. Alonso, A. Palomo, Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mix-tures, Cement and Concrete Research, 31, 25–30 (2001). DOI: 10.1016/S0008-8846(00)00435-X

Lj. Kljajević, S. Nenadović, M. Nenadović, N. Bun-daleski, B. Todorović, V. Pavlović, Ž. Rakočević, Struc-tural and chemical properties of thermally treated geopol-ymer samples, Ceramics International, 43, 6700–6708 (2017). DOI: 10.1016/j.ceramint.2017.02.066




How to Cite

Ivanović, M., Nenadović, S., Pavlović, V. P., Radović, I., Kijevčanin, M., Pavlović, V. B., & Kljajević, L. (2021). The influence of thermodynamic parameters on alkaline activator of geopolymers and structure of geopolymers. Macedonian Journal of Chemistry and Chemical Engineering, 40(1), 107–117.



Materials Chemistry

Most read articles by the same author(s)