A New Approach to the Total Synthesıs of (±)-Nordasycarpıdone by Rıng-closure wıth Tetrachloro-1,4-benzoquınone
DOI:
https://doi.org/10.20450/mjcce.2020.1736Keywords:
dasycarpidone, uleine, nordasycarpidone, 1, 5-methanoazacino[4, 3-b]indoleAbstract
A new synthetic route for the (±)-nordasycarpidone was achieved in five steps with an overall yield of 41%. This route involves ring closure and formation of 5 which has a methanoazocino[4,3-b]indole skeleton in the key step. The reaction also involved a cyclization reaction of tetrahydrocarbazole with a monoalkyl nitrile side chain at the C-2 position, and this reaction was mediated by tetrachloro-1,4-benzoquinone (TCB). The central step in the synthesis was the closure of the D-ring of the intra-molecular structure and the addition of amine, which resulted in an aza-tetracyclic substructure that contained the ABCD-ring of the strychnos alkaloid family.
References
F. Tang, M. G. Banwell, A. C. Willis, Palladium-catalyzed Ullmann Cross-Coupling/Tandem reductive cyclization route to key members of the uleine alkaloid family, J. Org. Chem. 81, 2950–2957 (2016).
DOI: https://doi.org/10.1021/acs.joc.6b00240
R. Akdag, Y. Ergun, Y. A new synthetic route to the synthesis of nordasycarpidone derivatives, J. Heterocycl. Chem. 44, 863–866 (2007).
DOI: https://doi.org/10.1002/jhet.5570440418
M. Amat, S. Hadida, G. Pshenichnyi., J. Bosch, Palladium(0)-catalyzed heteroarylation of 2- and 3-indolylzinc derivatives. An efficient general method for the preparation of (2-pyridyl)indoles and their application to indole alkaloid synthesis, J. Org. Chem. 62, 3158–3175 (1997).
DOI: https://doi.org/10.1021/jo962169u
J. Gracia, N. Casamitjana, J. Bonjoch, Total synthesis of uleine-type and strychnos alkaloids through a common intermediate, J. Org. Chem. 59, 3939–3951 (1994). DOI: https://doi.org/10.1021/jo00093a028
J. Bonjoch, N. Casamitjana, J. Gracia, A stereoselective total synthesis of dasycarpidan alkaloids: (±)-dasycarpidone, (±)-dasycarpidol and (±)-nordasycarpidone, J. Chem. Soc. Chem. Commun. 23, 1687–1688 (1991).
DOI: https://doi.org/10.1039/C39910001687
T. P. C. Chierrito, A. C. C. Aguiar, I. M. de Andrade, I. P. Ceravlolo, R. A. C. Gonçalves, A. J. B. de Oliveria, A. U. Krettli, Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum, Malar. J. 13, 142–151 (2014).
DOI: https://doi.org/10.1186/1475-2875-13-142
E. C. Miranda, S. Blechert, S. Gilbertin, Ein neuer Indolalkaloidtyp, Tetrahedron Lett. 23, 5395–5398 (1982).
DOI: https://doi.org/10.1016/0040-4039(82)80139-1
A. Jackson, N. D. V. Wilson, A. J. Gaskel, J. J. A. Joule, The syntheses of (±)-dasycarpidone, (±)-3-epi-dasy¬carpidone, (±)-uleine and (±)-3-epi-uleine, J. Chem. Soc. C, 2738–2747 (1969).
DOI: https://doi.org/10.1039/J39690002738
T. Kametani, T. Suzuki, Syntheses of heterocyclic compounds. CCCXCIV. Total syntheses of (±)-dasycarpidone and (±)-3-epidasycarpidone. Formal total syntheses of (±)-uleine and (±)-3-epiuleine, J. Org. Chem. 36, 1291–1293 (1971).
DOI: https://doi.org/10.1021/jo00808a026
N. Uludag, T. Hökelek, S. Patır, A new approach to the total synthesis of (±)‐20‐epidasycarpidone, J. Heterocycl. Chem. 43, 585–591 (2006).
DOI: https://doi.org/10.1002/jhet.5570430310
N. Uludag, S. Patır, Studies on the synthesis of the azocino[4,3‐b]indole framework and related compounds, J. Heterocycl. Chem. 44, 1317–1322 (2007).
DOI: https://doi.org/10.1002/jhet.5570440613
N. Uludag, R. Yılmaz, O. Asutay, N. Colak, Facile synthesis of the azocino[4,3-b]indole framework of strychnopivotine and other Strychnos alkaloids, Chem. Heterocycl. Compd. 52, 196–199 (2016).
DOI: https://doi.org/10.1007/s10593-016-1860-4
L. J. Dolby, H. Biere, The total synthesis of (±)-da-sycarpidone and (±)-epidasycarpidone, J. Am. Chem. Soc. 90, 2699–2700 (1968).
DOI: https://doi.org/10.1021/ja01012a047
L. Micouin, A. Diez, J. Castells, D. Lopez, M. Rubiralta, J. C. Quirion, H. P. Husson, Synthetic applications of 2-(1,3-dithian-2-yl)indoles V1. Asym-metric synthesis of dasycarpidone-type indole alkaloids, Tetrahedron Lett. 36, 1693–1696 (1995).
DOI: https://doi.org/10.1016/0040-4039(95)00047-G
S. Patır, N. Uludag, A novel Synthetic route for the total synthesis of (±)-uleine, Tetrahedron, 65, 115–118 (2009). DOI: https://doi.org/10.1016/j.tet.2008.10.102
M. Amat, M. Perez, N. Llor, M. Martinelli, E. Molins, J. Bosch, Enantioselective formal synthesis of uleine alkaloids from phenylglycinol-derived bicyclic lactams. Chem. Commun. 35, 1602–1603 (2004).
DOI: https://doi.org/10.1039/B400987H
P. Forns, A. Diez, M. Rubiralta, X. Solans, M. Font-Bardia, Synthetic applications of 2-(1,3-dithian-2-yl)indoles VI.1 Synthesis of 20-epidasycarpidone, Tetrahedron, 52, 3563–3574 (1996).
DOI: https://doi.org/10.1016/0040-4020(96)00033-6
N. Uludag, M. Yakup, Concise Total Synthesis of 20-deethyl-4-demethyldasycarpidone, Org. Prep. Proc. Int. 47, 454–460 (2015).
DOI: https://doi.org/10.1080/00304948.2015.1088756
E. J. Corey, K. Shimoji, Magnesium and zinc-catalyzed thioketalization, Tetrahedron Lett. 24, 169–172 (1983).
DOI: https://doi.org/10.1016/S0040-4039(00)81357-X
J. Bosch, M. Rubiralta, A. Domingo, J. Bolos, A. Linares, C. Minguillon, M. Amat, J. Bonjoch, Synthetic applications of 2-cyano-1,2,3,6-tetrahydropyridines. 2. Synthesis of isodasycarpidone and related systems, the ervitsine skeleton and its benzo analog, J. Org. Chem. 50, 1516–1522 (1985).
DOI: https://doi.org/10.1021/jo00209a031
N. J. Cussans, S. V. Ley, D. H. R. Barton, Removal of thioacetal protecting groups by benzeneseleninic anhydride, J. Chem Soc. Perkin Trans. I, 1654–1657 (1980).
DOI: https://doi.org/10.1039/P19800001654
J. Málek, M. Černý, Reduction of organic compounds by alkoxyaluminohydrides, Synthesis, 5, 217–234 (1972).
DOI: https://doi.org/10.1055/s-1972–21858
C. Höfler, C. Rüchardt, Bimolecular formation of radicals by hydrogen transfer, on the mechanism of quinone dehydrogenations, Liebigs. Ann. 183–188 (1996). DOI: https://doi.org/10.1002/jlac.199619960206
Y. Zhang, C, Li, DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones, J. Am. Chem. Soc. 128, 4242–4243 (2006). DOI: https://doi.org/10.1021/ja060050p
W. Tu, P. E. Floreangic, Oxidative carbocation formation in macrocycles: Synthesis of the neopeltolide macrocycle, Angew. Chem. Int. Ed. 48, 4567–4571 (2009). DOI: https://doi.org/10.1002/anie.200901489
M. Amat, S. Hadida, N. Llor, S. Sathyanarayana, J. Bosc, Studies on the configurational stability of 3-(2-piperidyl)indoles, J. Org. Chem. 61, 3878–3882 (1996).
DOI: https://doi.org/10.1021/jo952251+
J. A. Joule, M. Ohashi, B. Gilbert, C. Djerassi, Alkaloids studies — LIII: The structures of nine new alkaloids from Aspidosperma dasycarpon A. DC. Tetrahedron, 21, 1717–1734 (1965).
DOI: https://doi.org/10.1016/S0040-4020(01)98642-9
M. C. Mollo, N. Gruber, J. E. Diaz, J. A. Bisceglia, L. R. Orelli, An efficient synthesis of N-alkyl-N-arylputrescines and cadaverines, Org. Prep. Proc. Int. 46, 444–452 (2014).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.