A simple and efficient method for constructing azocino[4,3-b]indole





dasycarpidone, indole alkaloid, strychnos alkaloids, 1, 5-methanoazacino[4, 3-b]indole


A new synthetic procedure has been developed to prepare the biologically important azocino[4,3-b]indole via the tetrafluoro-1,4-benzoquinone (TFB)-mediated cyclization of a tetrahydrocarbazole derivative bearing an amide side chain at the C-2 position. For the first time, this strategy is based on a different method for the C-2 position of the tetrahydrocarbazole for the synthesis of methanoazocino[4,3-b]indole. The notable features of this protocol include its operational simplicity and high reaction yields. Furthermore, the structures of all the presently synthesized compounds were confirmed using spectroscopic methods (1H NMR, 13C NMR, FT-IR).


(1) Chaudhari, T. Y.; Tandon, V., Recent approaches to the synthesis of tetrahydrocarbazoles. Org. Biomol. Chem. 2021, 19, 1926–1939.


(2) Tan, F.; Cheng, H.-V., Catalytic asymmetric synthesis of tetrahydrocarbazoles. Chem. Commun. 2019, 55, 6151–6164. https://doi.org/10.1039/C9CC02486G

(3) Martin, D. B. C.; Nguyen, L. Q., Syntheses of strychnine, norfluorocurarine, dehydrodesacetylretu¬line, and valparicine enabled by intramolecular cyclo¬additions of zincke aldehydes. J. Org. Chem. 2012, 77, 17–46. https://doi.org/10.1021/jo2020246

(4) Patir, S.; Uludag, N., A novel synthetic route for the total synthesis of (±)-uleine. Tetrahedron 2009, 65, 115–118. https://doi.org/10.1016/j.tet.2008.10.102

(5) Uludag, N., A new approach to the total synthesıs of (±)-nordasycarpidone by ring-closure with tetrachloro-1, 4-benzoquinone. Maced. J. Chem. Chem. Eng. 2020, 39, 11–16. http://dx.doi.org/10.20450/mjcce.2020.1736

(6) Uludag N., A Facile and convenient synthesis of (±)-dasycarpidone, Chem. Nat. Compd. 2020, 56, 105–108.


(7) Bosch, J.; Amat, M.; Sanfeliu, E.; Miaranda, M. A., Studies on the synthesis of pentacyclic strychnos indole alkaloids. Photocyclization of n-chloroacetyl-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3-b]indole derivatives. Tetrahedron 1985, 41, 2557–2566.


(8) Bennasar, M.-L.; Solé, D. S.; Zulaica, E.; Alonso, S., Synthesis of cleavamine-type indole alkaloids and their 5-nor derivatives by a ring-closing metathesis–vinyl halide Heck cyclization strategy. Tetrahedron 2013, 69, 2534–2541. https://doi.org/10.1016/j.tet.2013.01.064

(9) Delayre, B.; Fung, C.; Wang, Q.; Zhu, J., Enantio-selective total synthesis of (+)- nordasycarpidone, (+)-dasycarpidone, and (+)-uleine. Helv. Chim. Acta. 2021, 104, e210008. https://doi.org/10.1002/hlca.202100088

(10) Cannon, J. S.; Overman, L. E., Is there no end to the total syntheses of strychnine. Lessons learned in strategy and tactics in total synthesis. Angew. Chem. Int. Ed. 2012, 51, 4288–4311.


(11) Beemelmanns, C.; Reissig, H. U., Strychnine as target, samarium diiodide as tool: A personal story. Chem. Rec. 2015, 15, 872–885.


(12) Kam, T.-S.; Sim, K.-M.; Lim, T.-M., Tronocarpine, a novel pentacyclic indole incorporating a seven-membered lactam moiety. Tetrahedron Lett. 2000, 41, 2733–2736.


(13) Bennasar, M.-L.; Sole, D.; Roca, T.; Valldosera, M., Exploratory studies toward a total synthesis of pericine (subincanadine E). Tetrahedron 2015, 71, 2246–2254.


(14) Lim, K.-H.; Kam, T.-S., Arboflorine, an unusual pentacyclic monoterpenoid indole alkaloid incorpo¬rating a third nitrogen atom. Org. Lett. 2006, 8, 1733–1735. https://doi.org/10.1021/ol060348k

(15) Baker, D. D.; Chu, M.; Oza U.; Raigargia, V., The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 2007, 24, 1225–1244.


(16) Lim, K.-H.; Hiraku, O.; Komiyama, K.; Kovona, T.; Hayashi, M.; Kam, T.-S., Biologically active indole alkaloids from Kopsia arborea. J. Nat. Prod. 2007, 70, 1302–1307. https://doi.org/10.1021/np0702234

(17) Uludag, N.;Yakup, M., Concise total synthesis of 20-deethyl-4-demethyldasycarpidone, Org. Prep. Proced. Int. 2015, 47, 454–460.


(18) Uludag, N., An effective approach to the strychnos alkaloids: total synthesis of Tubifolidine. Chem. Nat. Compd. 2021, 57, 491–496.


(19) Bonjoch, J.; Quirante, J.; Rodriguez, M.; Bosch, J., Synthetic entry to 8-(o-nitrophenyl-2-azabicyclo[3.3.1] nonan-7-ones. Intermediates for the synthesis of strychnos-type Systems. Tetrahedron 1988, 44, 2087–2092.


(20) Uludag, N.; Serdaroglu, G., New route for synthesis of 2-(2,2-dimethoxyethyl)-1,2,3,4,5,6-hexahydro-1,5-me-thanoazocino[4,3-b]indole and DFT investigation. Heliyon 2020, 6, e04105.


(21) Serdaroglu, G.; Uludag, N., Structural, electronic, and spectroscopic study on 1,5-methanoazocino[4,3-b]indole synthesized by TFB-based route. Chem Pap. 2021, 75, 4549–4564. https://doi.org/10.1007/s11696-021-01683-y

(22) Uludag, N.; Duran, E., A new approach to the total synthesis of 20-deethyltubifolidine and an entry to the azocino[4,3-b]indoles. Org. Prep. Proced. Int. 2020, 52, 434–441. https://doi.org/10.1080/00304948.2020.1780886

(23) Uludag, N.; Serdaroglu, G., An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT compu-tational analysis (IR, NMR, UV–Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]in-dole core structure. J. Mol. Struct. 2018, 1155, 548–560.


(24) Chuck, C. O.; Chen C.; Ke, Z.; Wan, D. C.; Chow H. F. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases. Eur. J. Med. Chem. 2013, 59, 1–6.


(25) Frizler, M.; Lohr, F.; Furtman, N.; Kläs, J.; Gutschow., Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. J. Med. Chem. 2011, 54, 396–400. https://doi.org/10.1021/jm101272p

(26) Uludag, N., An efficient synthesis of nitriles from aldo-ximes in the presence of trifluoromethanesulfonic an-hydride in mild conditions. Russ. J. Org.Chem. 2020, 56, 1640–1645. https://doi.org/10.1134/S1070428020090225

(27) Uludag, N.; Giden, O. N., A new reagent for efficient synthesis of nitriles from Aldoximes using methoxymethyl bromide. Rev. Roum. Chim. 2019, 64, 993–998.


(28) Spasevska, M.; Bogdonav, J.; Babunovska, H. Deve-lopment of chromatographic methods for the baine detectıon and quantifıcation along with some of related alkaloid derivatives. Maced. J. Chem. Chem. Eng. 2015, 34, 231–243. http://dx.doi.org/10.20450/mjcce.2015.685

(29) Serdaroglu, G.; Uludag, N.; Ercag, E., Cyanomethylation of 2,3,4,9-tetrahydro-1H-carbazol-1-one based on using two different reagents: Antioxidant activity and DFT studies. J. Mol. Struct. 2022, 1253, 132262.


(30) Acevska, J.; Stefkov, G.; Nakov, N.; Petkovska, R.; Ugrinova, L.; Kulevanova, S.; Dimitrovska, A., Chemometric approach for the development, optimization and validation of hilic methods used for the determınatıon of alkaloids from poppy straw. Maced. J. Chem. Chem. Eng. 2014, 33, 73–83.


(31) He, W.; Wang, P.; Chen, J.; Xie, W., Recent progress in the total synthesis of strychnos alkaloids. Org. Biomol. Chem. 2020, 18, 1046–1056.


(32) Kumar, K.; Vivekanad, T.; Sing, B.; Ramasastry, S. S. V., C(sp3)–H activation enabled by (η3-indolylmethyl) palladium complexes: Synthesis of monosubstituted tetrahydrocarbazoles. Synthesis 2021, 54, 943–952. https://doi.org/10.1055/a-1516-7960

(33) Zhao, C.-Y.; Pang, Y.; Li, J.-Q.; Liang, C.; Su, G.-F.; Mo, D.-L. Iodine(III) reagent-mediated intramolecular amination of 2-alkenylanilines to prepare indoles. Adv. Synth. Catal. 2018, 360, 1919–1925.


(34) Bajws, J. S.; Prasad, G.-P. K.; Repic, O.; Blacklock, T. J., Blacklock, deprotection of N-tosylated indoles and related structures using cesium carbonate. Tetrahedron Lett. 2006, 47, 6425–6427.


(35) Mondal, A.; Subaramanian, M.; Nandakumar, A.; Balarman, E., Manganese-catalyzed direct conversion of ester to amide with liberation of H2. Org. Lett. 2018, 20, 3381–3384. https://doi.org/10.1021/acs.orglett.8b01305

(36) Marti, C.; Carreira, E. M., Construction of spiro[pyr-rolidine-3,3′-oxindoles] − recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem. 2003, 2209–2219. https://doi.org/10.1002/ejoc.200300050.

(37) Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-Posner, Y.; Avram, L.; Milstein, D., Direct synthesis of amides by dehydrogenative coupling of amines with either alcohols or esters: manganese pincer complex as catalyst. Angew. Chem. Int. Ed. 2017, 56, 14992–14996. https://doi.org/10.1002/anie.201709180

(38) Kuwano, R.; Takahashi, M.; Ito. Y. Reduction of amides to amines via catalytic hydrosilylation by a rhodium complex. Tetrahedron Lett. 1998, 39, 1017–1020. https://doi.org/10.1016/S0040-4039(97)10804-8

(39) Uludag, N.; Mutlu, H., An improved approach to the synthesis of tetracyclic 20-dethyl-4-demethyldasy-carpidone and 20-Deethyldasycarpidone. Russ. J. Org. Chem. 2022, 58, 1267–1271.


(40) Ravinder, B.; Rajeswar, R. S.; Panasa, A. R.; Rakeshwar, B., Amide activation by TMSCl: reduction of amides to amines by LiAlH4 under mild conditions, Tetrahedron Lett. 2013, 54, 4908–4913.




2022-12-28 — Updated on 2022-12-30


How to Cite

Uludag, N. (2022). A simple and efficient method for constructing azocino[4,3-b]indole. Macedonian Journal of Chemistry and Chemical Engineering, 41(2), 187–192. https://doi.org/10.20450/mjcce.2022.2471 (Original work published December 28, 2022)



Organic Chemistry