Ion-exchange properties of the natural zeolite amicite

Authors

  • Nikita V. Chukanov Institute of Problems of Chemical Physics
  • Olga N. Kazheva Institute of Problems of Chemical Physics
  • Nadezhda A. Chervonnaya Institute of Problems of Chemical Physics
  • Dmitry A. Varlamov Institute of Experimental Mineralogy
  • Vera N. Ermolaeva Institute of Experimental Mineralogy
  • Igor V. Pekov Faculty of Mineralogy, Moscow State University
  • Gennadiy V. Shilov Institute of Problems of Chemical Physics

DOI:

https://doi.org/10.20450/mjcce.2020.1984

Keywords:

amicite, zeolite, ion exchange, crystal structure, infrared spectroscopy

Abstract

Crystals of the natural zeolite amicite, ideally K4Na4(Al8Si8O32)·10H2O, were ion-exchanged in the reactions with 0.1 N aqueous solutions of AgNO3, RbNO3, CsNO3 and Pb(NO3)2 at 363 K for 24 h. Under these conditions, Cs+ substitutes K+ whereas the most part of Na+ remains unexchanged; Rb+ partly substitutes both Na+ and K+; Pb2+ and Ag+ completely substitute Na+ and K+. All the compounds are monoclinic. The Cs- and Rb-substituted samples have unit-cell parameters close to those of initial amicite. The exchange of Na+ and K+ for Ag+ is accompanied by a significant decrease of the unit-cell volume. The unit-cell parameter c of Pb-amicite is nearly threefold larger than the c parameter of initial amicite. Infrared spectra show that framework topology is preserved during the ion exchange. The crystal structures of initial and Cs-exchanged amicites have been solved by direct methods.

References

A. Alberti, G. Hentschel, G. Vezzalini, Amicite, a new natural zeolite, Neues Jahrbuch für Mineralogie, Mo-natshefte, 481–488 (1979).

A. Alberti, G. Vezzalini, The crystal structure of amicite, a zeolite, Acta Crystallographica, 35, 2866–2869 (1979). DOI: https://doi.org/10.1107/S0567740879010852

A. P. Khomyakov, G. E. Cherepivskaya, T. A. Kurova, V. V. Kaptsov, Amicite K2Na2Al4Si4O16·5H2O – the first find in the U.S.S.R, Doklady Academii Nauk SSSR. 263, 978–980 (1982) (Russian).

I. V. Pekov, Kukisvumchorr Deposit: Mineralogy of Alkaline Pegmatites and Hydrothermalites, Ocean Pic-rures Ltd., Littleton (2004).

G. Artioli. The crystal structure of garronite, Americal Mineralogist, 77, 189–196 (1992).

https://pubs.geoscienceworld.org/msa/ammin/article-abstract/77/1-2/189/42585/The-crystal-structure-of-garronite?redirectedFrom=fulltext

L. B. McCusker, C. Baerlocher, R. Nawaz, Rietveld re-finement of the crystal structure of the new zeolite mineral gobbinsite, Zeitschrift für Kristallografie, 171, 281–289 (1985).

https://rruff.info/doclib/zk/vol171/ZK171_281.pdf

T. Bauer, W. Baur, Structural changes in the natural zeo-lite gismondine (GIS) induced by cation exchange with Ag, Cs, Ba, Li, Na, K and Rb, European Journal of Min-eralogy, 10, 133–147 (1998).

DOI: 10.1127/ejm/10/1/0133.

C. J. Adams, A. Araya, S. W. Carr, A. P. Chapple, P. Graham, A. R. Minihan, T. J. Osinga, Zeolite MAP: A new detergent builder, Zeolite Science 1994: Recent Pro-gress and Discussions Studies in Surface Science and Catalysis, H. G. Karge and J. Weitkamp (Eds.). Elsevier Sci., 98, 206–207 (1995).

S. Allen, S. Carr, A. Chapple, A. Dyer, B. Heywood, Ion exchange in the synthetic gismondine, zeolite MAP. Physical Chemistry, Chemical Physics, 4, 2409–2415 (2002). DOI: https://doi.org/10.1039/B111490P

G. Vezzalini, A. Alberti, A. Sani, M. Triscari. The dehy-dration process in amicite, Microporous and Mesoporous Materials, 31, 253–262 (1999).

DOI: 10.1016/S1387-1811(99)00076-1.

G. M. Sheldrick, SHELX-97, University of Göttingen, Germany (1997). http://shelx.uni-ac.gwdg.de/SHELX/

Agilent, CrysAlis PRO, version 1.171.36.20, Agilent Technologies Ltd, Yarnton, Oxfordshire, England (2012). https://www.agilent.com/cs/library/usermanuals/Public/CrysAlis_Pro_User_Manual.pdf

Downloads

Published

2020-10-14

How to Cite

Chukanov, N. V., Kazheva, O. N., Chervonnaya, N. A., Varlamov, D. A., Ermolaeva, V. N., Pekov, I. V., & Shilov, G. V. (2020). Ion-exchange properties of the natural zeolite amicite. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 207–216. https://doi.org/10.20450/mjcce.2020.1984

Issue

Section

Materials Chemistry