Development of voltammetric melanin sensor with 2,5-dimethylfuran modified platinum electrode

Authors

DOI:

https://doi.org/10.20450/mjcce.2021.2399

Keywords:

square wave voltammetry, melanin, sensor, 2, 5-dimethylfuran

Abstract

In this study, an electrochemical sensor was developed for the electrochemical determination of melanin. For this purpose, phosphate buffer salt (PBS, pH 7.00) solution was used as an electrolyte, 2,5-dimethylfuran (2,5-DMF) as a monomer, Pt wire as the auxilary electrode, Ag/AgCl electrode as the reference electrode and a platinum electrode as the working electrode. The modification of the electrode was performed by polymerization of 2,5-DMF at the bare Pt electrode surface using the cyclic voltammetry method. Parameters such as film thickness, scan rate and pulse amplitude with prepared 2,5-DMF modified platinum electrode (p(2,5-DMF)/PtE) were optimized by square wave voltammetry (SWV) in PBS buffer containing melanin. In optimum conditions, the anodic peak height showed a linear increase with the melanin concentration. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated to be 0.088 mmol/l and 0.292 mmol/l, respectively, with melanin concentrations ranging from 0.10 to 2.20 mmol/l and the correlation coefficient (R2) was calculated as 0.9985. Stability of the prepared sensor was found to be 99.63% by using the reproducibility experiments (n = 15).

References

M. J. Butler, A. W. Day, Fungal melanins: a review, Canadian Journal of Microbiology, 44, 1115–1136 (1998). DOI: https://doi.org/10.1139/w98-119

A. A. Bell, M. H. Wheeler, Biosynthesis and Functions of Fungal Melanins, Annual Review of Phytopathology, 24, 411–451 (1986).

DOI: https://doi.org/10.1146/annurev.py.24.090186.002211

H. C. Eisenman, A. Casadevall, Synthesis and assembly of fungal melanin, Applied Microbiology and Biotechnol-ogy, 93, 931–940 (2012).

DOI: https://doi.org/10.1007/s00253-011-3777-2

R. V. Fogarty, J. M. Tobin, Fungal melanins and their interactions with metals, Enzyme and Microbial Technol-ogy, 19, 311–317 (1996).

DOI: https://doi.org/10.1016/0141-0229(96)00002-6

B. L. Gómez, J. D. Nosanchuk, Melanin and fungi, Cur-rent Opinion in Infectious Diseases, 16, 91–96 (2003).

DOI: https://doi.org/10.1097/00001432-200304000-00005

A. A. R. Watt, J. P. Bothma, P. Meredith, The supramo-lecular structure of melanin, Soft Matter, 5, 3754–3760 (2009). DOI: https://doi.org/10.1039/B902507C

P. Meredith, T. Sarna, The physical and chemical proper-ties of eumelanin, Pigment Cell Research, 19, 572–594(2006).

DOI: https://doi.org/10.1111/j.1600-0749.2006.00345.x

P. M. Plonka, M. Grabacka, Melanin synthesis in micro-organisms--biotechnological and medical aspects, Acta Biochim Pol., 53, 429–443 (2006).

N. N. Gessler, A. S Egorova, T. A. Belozerskaya, Mela-nin pigments of fungi under extreme environmental con-ditions (Review), Applied Biochemistry and Microbiolo-gy, 50, 105–113 (2014).

DOI: https://doi.org/10.1134/S0003683814020094

M. d’Ischia, K. Wakamatsu, F. Cicoira, E. Di Mauro, J. C. Garcia-Borron, S. Commo, et al., Melanins and mel-anogenesis: from pigment cells to human health and tech-nological applications, Pigment Cell Melanoma Res., 28, 520–544 (2015).

DOI: https://doi.org/10.1111/pcmr.12393

F. C. Lopes, D. M. Tichota, J. Q. Pereira, J. Segalin, A. De Oliveira Rios, A. Brandelli, Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative, Applied Biochemistry and Biotech-nology, 171, 616–625 (2013).

DOI: https://doi.org/10.1007/s12010-013-0392-y

P. Akilandeswari, B. V. Pradeep, Exploration of industri-ally important pigments from soil fungi, Applied Microbi-ology and Biotechnology, 100, 1631–1643 (2016).

DOI: https://doi.org/10.1007/s00253-015-7231-8

N. Duran, M. F. Teixeira, R. De Conti, E. Esposito, Eco-logical-friendly pigments from fungi, Critical Reviews in Food Science and Nutrition, 42, 53–66 (2002).

DOI: https://doi.org/10.1080/10408690290825457

F. S. Chambergo, E. Y. Valencia, Fungal biodiversity to biotechnology, Applied Microbiology and Biotechno¬logy, 100, 2567–2577 (2016).

DOI: https://doi.org/10.1007/s00253-016-7305-2

B. Fernandes, T. Matama, D. Guimaraes, A. Gomes, A. Cavaco-Paulo, Fluorescent quantification of melanin, Pigment Cell Melanoma Res. 29, 707–712 (2016).

DOI: https://doi.org/10.1111/pcmr.12535

M. P. da Silva, J. C. Fernandes, N. B. de Figueiredo, M. Congiu, M. Mulato, C. F. de O. Graeff, Melanin as an ac-tive layer in biosensors, AIP Advances, 4, 1–8 (2014).

DOI: https://doi.org/10.1063/1.4869638

A. B. Mostert, B. J. Powell, I. R. Gentle, P. Meredith, On the origin of electrical conductivity in the bio-electronic material melanin, Applied Physics Letters, 100, 093701 (2012).

DOI: https://doi.org/10.1063/1.3688491

A. P. F. Turner, I. Karube, G. S. Wilson, Biosensors: Fundamentals and Applications, Oxford University Press. 1987, pp. 52.

F. G. Bănică, Chemical Sensors and Biosensors: Fun-damentals and Applications, Chichester, UK: John Wiley 2012. DOI: https://doi.org/10.1002/9781118354162

C. Dincer, R. Bruch, E. Costa–Rama, A. Fernández, T. Maria, A. Merkoçi, A. Manz, G. A. Urban, F. Güder, Disposable sensors in diagnostics, food, and environmen-tal monitoring, Advanced Materials, 31, 1806739 (2019). DOI: https://doi.org/10.1002/adma.201806739

A. Juzgado, A. Solda, A. Ostric, A. Criado, G. Valenti, S. Rapino, G. Conti, G. Fracasso, F. Paolucci, M. Prato, Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker, Journal of Materials Chemis-try B, 32, 6681–6687 (2017).

DOI: https://doi.org/10.1039/C7TB01557G

T. Vo-Dinh, B. Cullum, Biosensors and biochips: ad-vances in biological and medical diagnostics, Fresenius' Journal of Analytical Chemistry, 366, 540–551 (2000).

DOI: https://doi.org/10.1007/s002160051549

G. Valenti, E. Rampazzo, E. Biavardi, E. Villani, G. Fra-casso, M. Marcaccio, F. Bertani, D. Ramarli, E. Dal-canale, F. Paolucci, L. Prodi, An electrochemilumines-cence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer, Faraday Discussions, 185, 299–309 (2015).

DOI: https://doi.org/10.1039/C5FD00096C

K. Wakamatsu, S. Ito, Advanced chemical methods in melanin determination, Pigment Cell Research, 15, 174–183 (2002).

DOI: https://doi.org/10.1034/j.1600-0749.2002.02017.x

K. J. Reszka, Z. Matuszak, C. F. Chıgnell, Lactoperoxi-dase-catalyzed oxidation of melanin by reactive nitrogen species derived from nitrite (NO2–): An EPR Study, Free Radical Biology and Medicine, 25, 208–216 (1998).

DOI: https://doi.org/10.1016/S0891-5849(98)00058-6

T. Watanabe, A. Tamura, Y. Yoshimura, H. Nakazawa, Determination of melanin in human hair by photoacoustic spectroscopy, Anal. Biochem., 254, 267–271 (1997).

DOI: https://doi.org/10.1006/abio.1997.2429

C-L. Serpentini, C. Gauchet, D. Montauzon, M. Comtat, J. Ginestar, N. Paillous, First electrochemical investiga-tion of the redox properties of DOPA–melanins by means of a carbon paste electrode, Electrochimica Acta, 45, 1663–1668 (2000).

DOI: https://doi.org/10.1016/S0013-4686(99)00388-6

R. Xu, C. T. Prontera, E. D. Mauro, A. Pezzella, F. Soa-vi, C. Santato, An electrochemical study of natural and chemically controlled eumelanin, APL Materials, 5, 126108 (2017). DOI: https://doi.org/10.1063/1.5000161

B. Aksoy, Ö. Güngör, S. Köytepe, T. Seçkin, Preparation of novel sensors based on polyimide membrane for sensi-tive and selective determination of dopamine, Polymer-Plastics Technology and Engineering, 55, 119–128 (2016).

DOI: https://doi.org/10.1080/03602559.2015.1055503

Ö. Güngör, İ. Özcan, M. A. Erdogan, B. Ateş, S. Köytepe, Differential pulse voltammetric (DPV) determination of the local anesthetic bupivacaine using polyimide membrane-based electrodes, Analytical Letters, 53:2, 228–244 (2020).

DOI: https://doi.org/10.1080/00032719.2019.1646752

S. T. Duran, C. B. A. Hassine, M. Burç, Ö. Güngör, Voltammetric Determination of α-Lipoic Acid using poly(vanillin) modified platinum electrode, Analytical and Bioanalytical Electrochemistry, 12 (6), 857–869 (2020).

S. T. Duran, N. Ayhan, B. Aksoy, S. Köytepe, A. Paşa-han, Preparation of triaminotriazine-based polyimide-modified electrodes and their use for selective detection of catechin in green tea samples, Polymer Bulletin, 77, 5065–5082 (2020).

DOI: https://doi.org/10.1007/s00289-019-03005-5

S. T. Duran, Determination of bisphenol a with poly (p-aminobenzoic acid) modified gold electrode by using dif-ferential pulse voltammetry, Gazi University Journal of Science, 32 (2), 426–438 (2019).

M. Burç, S. Köytepe, S. T. Duran, N. Ayhan, B. Aksoy, Turgay Seçkin, Development of voltammetric sensor based on polyimide-MWCNT composite membrane for rapid and highly sensitive detection of paracetamol, Measurement, 151, 107103 (2020).

DOI: https://doi.org/10.1016/j.measurement.2019.107103

R. Gulaboski, V. Mirceski, Application of voltammetry in biomedicine – Recent achievements in enzymatic voltam-metry, Macedonian Journal of Chemistry and Chemical Engineering, 39 (2), 153–166 (2020).

DOI: https://doi.org/10.20450/mjcce.2020.2152

V. Mirceski, R. Gulaboski, Recent achievments in square-wave voltammetry – A review, Macedonian Jour-nal of Chemistry and Chemical Engineering, 33 (1), 1–12 (2014).

A. Chen, B. Shah, Electrochemical sensing and biosens-ing based on square wave voltammetry, Anal. Methods, 5 (2), 2158–2173 (2013).

DOI: https://doi.org/10.1039/C3AY40155C

M. Burç, Ö. Güngör, S.Titretir Duran, Voltammetric determination of curcumin in spices using platinum elec-trode electrochemically modified with poly(vanillin-co-caffeic acid), Analytical and Bioanalytical Electrochemis-try, 12 (5), 625–643 (2020).

AAT Bioquest, IncPBS (Phosphate Buffered Saline) (1X, pH 7.4). Retrieved from https://www.aatbio.com/resources/ buffer-preparations-and-recipes/pbs-phosphate-buffered-saline. (2020, No-vember 23).

Downloads

Published

2021-11-26

How to Cite

Burç, M., Asma, D., & Titretir Duran, S. (2021). Development of voltammetric melanin sensor with 2,5-dimethylfuran modified platinum electrode. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 289–297. https://doi.org/10.20450/mjcce.2021.2399

Issue

Section

Electrochemistry

Most read articles by the same author(s)