Voltammetric determination of resveratrol using poly(l-phenylalanine)-modified gold electrode


  • Öznur Güngör Chemistry Department, Arts and Sciences Faculty, İnönü University, 44280, Malatya
  • Chedia Ben Ali Hassine Electrical and Electronics Engineering Department, Engineering Faculty, Özyeğin University, İstanbul
  • Muammer Burç Chemistry Department, Arts and Sciences Faculty, İnönü University, 44280, Malatya
  • Serap Titretir Duran Chemistry Department, Arts and Sciences Faculty, İnönü University, 44280, Malatya




Gold electrode, L-phenylalanine, electrochemical measurements, resveratrol, electropolymerization, square wave voltammetry


In this study, we investigated the electrochemical modification of a gold electrode using poly(L-phenylalanine) and its applicability for the quantification of resveratrol (RESV). The gold electrode was modified with L-phenylalanine employing cyclic voltammetry (CV) in aqueous solution. The detection of RESV with the modified electrode was investigated by square wave voltammetry (SWV) in a phosphate buffer solution (PBS) (pH = 1.2). The analytical calibration curve for RESV showed a linear response with concentration in the oxidation peak current range from 50 to 1000 µM, with a limit of detection (LOD) of 35.16 µM and limit of quantitation (LOQ) of 105.5 µM. The application of the prepared electrochemical sensor was carried out with a standard addition method in red wine samples.


H. K. Biesalski, Polyphenols and inflammation: Basic interactions, Curr. Opin. Clin. Nutr. Metab. Care, 10 (6), 724–728 (2007). DOI: 10.1097/MCO.0b013e3282f0cef2

L. J. Laslett, Jr. P. Alagona, B. A. Clark 3rd, Jr.J. P. Drozda, F. Saldivar, S. R. Wilson, C. Poe, M. Hart, The worldwide environment of cardiovascular disease: Preva-lence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology, J. Am. Coll. Cardiol., 60, 1–49 (2012). DOI: 10.1016/j.jacc.2012.11.002

A. Abdulla, X. Zhao, F. Yang, Natural Polyphenols In-hibit Lysine-Specific Demethylase-1, Journal of Bio-chemical and Pharmacological Research, 1 (1), 56–63 (2013).

M. Shakibaei, K. B. Harikumar, B. B. Aggarwal, Resveratrol addiction: to die or not to die, Molecular Nu-trition & Food Research, 53, 115–128 (2009).

DOI: 10.1002/mnfr.200800148

W. Yu, Y. C. Fu, W. Wang, Cellular and molecular ef-fects of resveratrol in health and disease, Journal of Cellu-lar Biochemistry, 113 (3), 752–759 (2012).

DOI: 10.1002/jcb.23431

J. M. Smoliga, J. A. Baur, H. A. Hausenblas, Resveratrol and health — A comprehensive review of human clinical trials, Mol. Nutr. Food Res., 5 (8), 1129–1141 (2011). DOI: 10.1002/mnfr.201100143

J. A. Baur, D. A. Sinclair, Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov-ery, 5, 493–506 (2006). DOI:10.1038/nrd2060

S. M. Mugo, B. J. Edmunds, D. J. Berg, N. K. Gill, An integrated carbon entrapped molecularly imprinted poly-mer (MIP) electrode for voltammetric detection of resveratrol in wine, Anal. Methods, 7, 9092–9099 (2015). DOI:10.1039/C5AY01799H

X. Huang, G. Mazza, Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry, Journal of Chromatography A, 1218 (24), 3890–3899 (2011).

E. Kuyumcu Savan, Square Wave Voltammetric (SWV) Determination of Quercetin in Tea Samples at a Single-Walled Carbon Nanotube (SWCNT) Modified Glassy Carbon Electrode (GCE), Anal. Lett., 53 (6), 858–872 (2020). DOI: 10.1080/00032719.2019.1684514

S. Tahtaisleyen, O. Gorduk, Y. Sahin, Electrochemical determination of tartrazine using a graphene/poly(L-phenylalanine) modified pencil graphite electrode, Anal. Lett., 53 (11), 1683–1703 (2020).

DOI: 10.1080/00032719.2020.1716242

Ö. Güngör, İ. Özcan, M. A. Erdoğan, B. Ateş, S. Köytepe, Differential pulse voltammetric (CPV) determi-nation of the anesthetic bupivacaine using polyimide membrane-based electrodes, Anal. Lett., 53 (2), 228–244 (2020). DOI: 10.1080/00032719.2019.1646752

Y. Altun, B. Uslu, S. A. Ozkan, Electroanalytical charac-teristics of Lercanidipine and its voltammetric determina-tion in pharmaceuticals and human serum on boron-doped diamond electrode, Anal. Lett., 43 (12), 1958–1975 (2010). DOI:10.1080/00032711003687047

G. Ziyatdinova, E. Kozlova, H. Budnikov, Chronocou-lometry of wine on multi-walled carbon nanotube modi-fied electrode: Antioxidant capacity assay, Food Chemis-try, 196, 405–410 (2016).

DOI: 10.1016/j.foodchem.2015.09.075.

Y. Zhou, L. Tang, G. Zeng, C. Zhang, Y. Zhang, X. Xie, Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review, Sensor. Actuat. B–Chem., 223, 280–294 (2016). DOI: 10.1016/j.snb.2015.09.090

L. Gao, Q. Chu, J. Ye, Determination of trans-Resveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection, Food Chem., 78 (2), 255–260 (2002).

DOI: 10.1016/s0308-8146(02)00115-2

J. X. Liu, Y. J. Wu, F. Wang, L. Gao, and B. X. Ye, Adsorptive voltammetric behaviors of resveratrol at graphite electrode and its determination in tablet dosage form, Journal of the Chinese Chemical Society, 55, 264 (2008). DOI:10.1002/jccs.200800039

B. Pekec, A. Oberreiter, S. Hauser, K. Kalcher, A. Ort-ner, Electrochemical sensor based on a cyclodextrin modi-fied carbon paste electrode for trans-resveratrol analysis, Int. J. Electrochem. Sci., 7, 4089–4098 (2012).

O. Corduneanu, P Janeiro, A. M. O. Brett, On the elec-trochemical oxidation of resveratrol, Electroanalysis, 18 (8), 757–762 (2006).

D. Airado-Rodríguez, T. Galeano-Díaz, I. Durán-Merás, Determination of trans-resveratrol in red wine by adsorp-tive stripping square-wave voltammetry with medium ex-change, Food Chem., 122 (4), 1320–1326 (2010). DOI: 10.1016/j.foodchem.2010.03.098

H. Zhang, L. Xu, J. Zheng, Anodic voltammetric behav-ior of resveratrol and its electroanalytical determination in pharmaceutical dosage form and urine, Talanta, 71 (1), 19–24 (2007). DOI: 10.1016/j.talanta.2006.03.017

X. Ma, M. Chao, Electrocatalytic determination of maltol in food products by cyclic voltammetry with a poly(L-phenylalanine) modified electrode, Anal. Methods, 5 (20), 5823–5829 (2013).

L. Wang, P. Huang, J. Bai, H. Wang, L. Zhang, Y. Zhao, Simultaneous electrochemical determination of phenol isomers in binary mixtures at a poly (phenylalanine) mod-ified glassy carbon electrode, Int. J. Electrochem. Sci., 1, 403–413 (2006).

R. S. Deinhammer, M. Ho, J. W. Anderegg, M. D. Por-ter, Electrochemical oxidation of amine-containing com-pounds: a route to the surface modification of glassy car-bon electrodes, Langmuir, 10 (4), 1306–1313 (1994). DOI: 10.1021/la00016a054

D. Guziejewski, Square-wave amplitude effect in cathodic and anodic stripping square-wave voltammetry, Electroa-nalysis, 31, 231–238 (2019).

DOI: 10.1002/elan.201800425

V. Mirceski, R. Gulaboski, Recent achievements in square-wave voltammetry (a review), Maced. J. Chem. Chem. Eng., 33 (1), 1–12 (2014).

DOI: http://dx.doi.org/10.20450/mjcce.2014.515

V. Mirceski, R. Gulaboski, M. Lovric, I. Bogeski, R. Kappl, M. Hoth, Square-wave voltammetry: a review on the recent progress, Electroanalysis, 25 2411–2422 (2013). DOI: 10.1002/elan.201300369




How to Cite

Güngör, Öznur, Ben Ali Hassine, C., Burç, M., & Titretir Duran, S. (2020). Voltammetric determination of resveratrol using poly(l-phenylalanine)-modified gold electrode. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 177–184. https://doi.org/10.20450/mjcce.2020.2073