Determination of naproxen by using differential pulse voltammetry with poly (aniline-2-sulfonic acid) modified boron doped diamond electrode


  • Öznur Güngör İnönü University



Naproxen, aniline-2-sulfonic acid, boron doped diamond electrode


In this study, an electrochemical sensor based on a boron doped diamond electrode (BDDE) was developed for the determination of naproxen (NAP) using a poly(aniline-2-sulfonic acid)/boron doped diamond electrode, p(A2SA/BDDE). Polymerization of A2SA was conducted in a water/acetonitrile (1:1) mixture containing 0.1 M sodium perchlorate (NaClO4) on bare BDDE and the electrochemical properties studied by cyclic voltammetry in ferricyanide/KNO3 solution. The prepared p(A2SA/BDDE) was used for detection of NAP. Effects of parameters such as monomer type and concentration, the number of cycles, and scan rate were investigated using differential pulse voltammetry (DPV) in phosphate buffer containing 0.75 mM NAP. The effect of electrolyte type and pH on DPV responses to NAP were also studied. The oxidative current peak stem from NAP concentration observed at 1.1 V potential. A linear calibration curve was obtained in the range of 0.05–1.00 mM NAP concentration. Correlation coefficient (R2), detection limit, and quantification limit were calculated as 0.9944, 0.0328 mM, and 0.1093 mM, respectively. In conclusion, it may be claimed that the modified electrode constructed in this work can be used successfully as a naproxen-selective membrane due to its ease of preparation, high R2 value, and good reproducibility.


Boynton, C. S.; Dick, C.F.; Mayer, G.H. NSAIDs: An overview. J. Clin. Pharmacol., 1988, 28 (6), 512–517.

Zhu, G.; Ju, H. Determination of naproxen with solid substrate room temperature phosphorimetry based on an orthogonal array design. Anal. Chim. Acta, 2004, 506 (2), 177–181.

Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R. Spectrophotometric and spectrofluoromet-ric methods for the determination of non-steroidal antiinflammatory drugs: a review. Arabian Journal of Chemistry, 2013, 6 (2), 145–163.

Panderi, I.; Parissi-Poulou, M. Second-derivative spec-trophotometric determination of naproxen in the pres-ence of its metabolite in human plasma. Analyst, 1994, 119 (4), 697–701.

Damiani, P.; Bearzotti, M.; Cabezon, M.A. Spectro-fluorometric determination of naproxen in tablets. Journal of Pharmaceutical and Biomedical Analysis, 2002, 29 (1–2), 229–238.

Ibañez, G.A.; Escandar, G.M. Combined liquid and solid-surface room temperature fluorimetric determi-nation of naproxen and salicylate in serum. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37 (1), 149–155.

Sádecká, J.; Čakrt, M.; Hercegová, A.; Polonský, J.; Skačáni, I. Determination of ibuprofen and naproxen in ´ tablets. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25 (5–6), 881–891.

Wainer, I.W.; Doyle, T.D. Application of highperfor-mance liquid chromatographic chiral stationary phases to pharmaceutical analysis structural and conforma-tional effects in the direct enantiomeric resolution of α-methylarylacetic acid antiinflammatory agents. Journal of Chromatography A, 1984, 284, 117–124.

Ekpe, A.; Tong, J.H.; Rodriguez, L. High-performance liquid chromatographic method development and vali-dation for the simultaneous quantitation of naproxen sodium and pseudoephedrine hydrochloride impuri-ties. J. Chromatogr. Sci., 2001, 39 (3), 81–86.

Karidas, T.; Avgerinos, A.; Malamataris, S. Extraction-less HPLC method for the determination of naproxen in human plasma and urine. Anal. Lett., 1993, 26 (11), 2341–2348.

Mikami, E.; Goto, T.; Ohno, T.; Matsumoto, H.; Nishida, M. Simultaneous analysis of naproxen, nabumetone and its major metabolite 6-methoxy-2-naphthylacetic acid in pharmaceuticals and human urine by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2000, 23 (5), 917–925.

Kazemifard, A.G.; Moore, D.E. Liquid chromatog-raphy with amperometric detection for the determina-tion of nonsteroidal anti-inflammatory drugs in plas-ma. Journal of Chromatography B: Biomedical Sci-ences and Applications, 1990, 533, 125–132.

Elsinghorst, P.W.; Kinzig, M.; Rodamer, M.; Holzgrabe, U.; Sörgel, F. An LC-MS/MS procedure for the quantification of naproxen in human plasma: de-velopment, validation, comparison with other meth-ods, and application to a pharmacokinetic study. Journal of Chromatography B, 2011, 879 (19), 1686–1696.

Suryanarayanan, V.; Zhang, Y.; Yoshihara, S.; Shira-kashi, T. Voltammetric Assay of Naproxen in Pharma-ceutical Formulations Using Boron-Doped Diamond Electrode. Electroanalysis, 2005, 17 (11), 925–932.

Mirceski, V.; Gulaboski, R. Recent achievements in square-wave voltammetry (a review). Maced. J. Chem. Chem. Eng., 2014, 33 (1), 1–12.

Gulaboski, R.; Mirceski, V. Application of Voltamme-try in Biomedicine-Recent Achievements in Enzymatic Voltammetry. Maced. J. Chem. Chem. Eng., 2020, 39 (2), 1–14.

Güngör,Ö.; Ben Ali Hassine, C.; Burç, M.; Titretir Duran, S. Voltammetric Determination of Resveratrol Using Poly(L-Phenylalanine)-Modified Gold Elec-trode. Maced. J. Chem. Chem. Eng., 2020, 39 (2), 177–184.

Kanoute, G.; Nivaud, E.; Paulet, B.; Boucly, P. Dos-age de derives de l’acide phenylpropionique: a activite pharmacologique par titrage coulometrique. Talanta, 1984, 31 (2), 144–146.

Adhoum, N.; Monser, L.; Toumi, M.; Boujlel, K. De-termination of naproxen in pharmaceuticals by differ-ential pulse voltammetry at a platinum electrode. Ana-lytica Chimica Acta, 2003, 495 (1–2), 69–75.

Fonseca, W. T.; Santos, R. F.; Alves, J. N.; Ribeiro, S. D.; Takeuchi, R. M.; Santos, A. L.; Assunção, R. M. N.; Filho, G. R.; Muñoz, R. A. A. Square-wave volt-ammetry as analytical tool for real-time study of con-trolled naproxen releasing from cellulose derivative materials. Electroanalysis, 2015, 27 (8), 1847–1854.

Lima, A. B.; Faria, E. O.; Montes, R. H. O.; Cunha, R. R.; Richter, E. M.; Munoz, R. A. A.; dos Santos, W. T. P. Electrochemical oxidation of ibuprofen and its volt-ammetric determination at a boron-doped diamond electrode. Electroanalysis, 2013, 25 (7), 1585–1588.

Afkhami, A.; Kafrashi, F.; Ahmadi, M.; Madrakian, T. A new chiral electrochemical sensor for the enantiose-lective recognition of naproxen enantiomers using L-cysteine selfassembled over gold nanoparticles on a gold electrode. RSC Advances, 2015, 5 (72), 58609–58615.

Stefano, J. S.; de Lima, A. P.; Montes, R. H. O.; Rich-ter, E. M.; Muñoz, R. A. A. Fast determination of naproxen in pharmaceutical formulations by batch in-jection analysis with pulsed amperometric detection. Journal of the Brazilian Chemical Society, 2012, 23 (10), 1834–1838.

Afzali, M.; Jahromi, Z.; Nekooie, R. Sensitive volt-ammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchemical Journal, 2019, 145, 373–379.

Aguilar-Lira, G. Y.; Álvarez Romero, G. A.; Rojas-Hernández, A.; Páez-Hernández, M. E.; Rodríguez-Ávila, J. A.; Romero-Romo, M. A. Voltammetric anal-ysis of naproxen in graphite electrodes and its deter-mination in pharmaceutical samples. Electroanalysis, 2014, 26 (7), 1573–1581.

Aguilar-Lira, G. Y.; Álvarez-Romero, G. A.; Rojas-Hernández, A.; Páez-Hernández, M. E.; Rodríguez-Ávila, J. A.; Romero-Romo, M. A. New insights on naproxen quantification using voltammetry and graph-ite electrodes development of an optimized and com-petitive methodology. ECS Transactions, 2015, 64 (45), 79–89.

Montes, R. H. O.; Stefano, J. S.; Richter, E. M.; Munoz, R. A. A. Exploring multiwalled carbon nano-tubes for naproxen detection. Electroanalysis, 2014, 26 (7), 1449–1453.

Montes, R. H. O.; Lima, A. P.; Cunha, R. R.; Guedes, T. J.; dos Santos, W. T. P.; Nossol, E.; Richter, E. M.; Munoz, R. A. A. Size effects of multi-walled carbon nanotubes on the electrochemical oxidation of propi-onic acid derivative drugs: ibuprofen and naproxen. Journal of Electroanalytical Chemistry, 2016, 775, 342–349.

Qian, L.; Raj Thiruppathi, A.; Elmahdy, R.; van der Zalm, J.; Chen, A. Graphene-Oxide-Based Electro-chemical Sensors for the Sensitive Detection of Phar-maceutical Drug Naproxen. Sensors, 2020, 20, 1252.

Norouzi, P.; Dousty, F.; Ganjali, M.R.; Daneshgar, P. Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formula-tion and biological fluid. International Journal of Electrochemical Science, 2009, 4, 1373–1386.

Tashkhourian, J.; Hemmateenejad, B.; Beigizadeh, H.; Hosseini-Sarvari, M.; Razmi, Z. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electro-chemical techniques. Journal of Electroanalytical Chemistry, 2014, 714–715, 103–108.

Sarhangzadeh, K. Application of multi wall carbon nanotube-graphene hybrid for voltammetric determi-nation of naproxen. Journal of the Iranian Chemical Society, 2015, 12 (12) 2133–2140.

Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Pro-gress in Preparation, Processing and Applications of Polyaniline. Progress in Polymer Science, 2009, 34 (8), 783–810.

Statistics for Analytical Chemistry, Miller, J. C., Miller, J. N., Eds.; New York: Halsted Press, 1984.

Development and validation of analytical methods, Riley, C. M., Rosanske, T. W., Eds.; New York: Else-vier Science Inc., 1996.



2022-05-21 — Updated on 2022-06-30


How to Cite

Güngör, Öznur. (2022). Determination of naproxen by using differential pulse voltammetry with poly (aniline-2-sulfonic acid) modified boron doped diamond electrode. Macedonian Journal of Chemistry and Chemical Engineering, 41(1), 11–20. (Original work published May 21, 2022)