Determination of naproxen by using differential pulse voltammetry with poly (aniline-2-sulfonic acid) modified boron doped diamond electrode
DOI:
https://doi.org/10.20450/mjcce.2022.2381Keywords:
Naproxen, aniline-2-sulfonic acid, boron doped diamond electrodeAbstract
In this study, an electrochemical sensor based on a boron doped diamond electrode (BDDE) was developed for the determination of naproxen (NAP) using a poly(aniline-2-sulfonic acid)/boron doped diamond electrode, p(A2SA/BDDE). Polymerization of A2SA was conducted in a water/acetonitrile (1:1) mixture containing 0.1 M sodium perchlorate (NaClO4) on bare BDDE and the electrochemical properties studied by cyclic voltammetry in ferricyanide/KNO3 solution. The prepared p(A2SA/BDDE) was used for detection of NAP. Effects of parameters such as monomer type and concentration, the number of cycles, and scan rate were investigated using differential pulse voltammetry (DPV) in phosphate buffer containing 0.75 mM NAP. The effect of electrolyte type and pH on DPV responses to NAP were also studied. The oxidative current peak stem from NAP concentration observed at 1.1 V potential. A linear calibration curve was obtained in the range of 0.05–1.00 mM NAP concentration. Correlation coefficient (R2), detection limit, and quantification limit were calculated as 0.9944, 0.0328 mM, and 0.1093 mM, respectively. In conclusion, it may be claimed that the modified electrode constructed in this work can be used successfully as a naproxen-selective membrane due to its ease of preparation, high R2 value, and good reproducibility.
References
Boynton, C. S.; Dick, C.F.; Mayer, G.H. NSAIDs: An overview. J. Clin. Pharmacol., 1988, 28 (6), 512–517. https://doi.org/10.1002/j.1552-4604.1988.tb03170.x
Zhu, G.; Ju, H. Determination of naproxen with solid substrate room temperature phosphorimetry based on an orthogonal array design. Anal. Chim. Acta, 2004, 506 (2), 177–181. https://doi.org/10.1016/j.aca.2003.11.035
Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R. Spectrophotometric and spectrofluoromet-ric methods for the determination of non-steroidal antiinflammatory drugs: a review. Arabian Journal of Chemistry, 2013, 6 (2), 145–163.
https://doi.org/10.1016/j.arabjc.2010.12.006
Panderi, I.; Parissi-Poulou, M. Second-derivative spec-trophotometric determination of naproxen in the pres-ence of its metabolite in human plasma. Analyst, 1994, 119 (4), 697–701.
Damiani, P.; Bearzotti, M.; Cabezon, M.A. Spectro-fluorometric determination of naproxen in tablets. Journal of Pharmaceutical and Biomedical Analysis, 2002, 29 (1–2), 229–238.
https://doi.org/10.1016/S0731-7085(02)00063-8
Ibañez, G.A.; Escandar, G.M. Combined liquid and solid-surface room temperature fluorimetric determi-nation of naproxen and salicylate in serum. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37 (1), 149–155. https://doi.org/10.1016/j.jpba.2004.10.003
Sádecká, J.; Čakrt, M.; Hercegová, A.; Polonský, J.; Skačáni, I. Determination of ibuprofen and naproxen in ´ tablets. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25 (5–6), 881–891.
https://doi.org/10.1016/S0731-7085(01)00374-0
Wainer, I.W.; Doyle, T.D. Application of highperfor-mance liquid chromatographic chiral stationary phases to pharmaceutical analysis structural and conforma-tional effects in the direct enantiomeric resolution of α-methylarylacetic acid antiinflammatory agents. Journal of Chromatography A, 1984, 284, 117–124.
https://doi.org/10.1016/S0021-9673(01)87807-9
Ekpe, A.; Tong, J.H.; Rodriguez, L. High-performance liquid chromatographic method development and vali-dation for the simultaneous quantitation of naproxen sodium and pseudoephedrine hydrochloride impuri-ties. J. Chromatogr. Sci., 2001, 39 (3), 81–86.
https://doi.org/10.1093/chromsci/39.3.81
Karidas, T.; Avgerinos, A.; Malamataris, S. Extraction-less HPLC method for the determination of naproxen in human plasma and urine. Anal. Lett., 1993, 26 (11), 2341–2348. https://doi.org/10.1080/00032719308017474
Mikami, E.; Goto, T.; Ohno, T.; Matsumoto, H.; Nishida, M. Simultaneous analysis of naproxen, nabumetone and its major metabolite 6-methoxy-2-naphthylacetic acid in pharmaceuticals and human urine by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2000, 23 (5), 917–925.
https://doi.org/10.1016/S0731-7085(00)00365-4
Kazemifard, A.G.; Moore, D.E. Liquid chromatog-raphy with amperometric detection for the determina-tion of nonsteroidal anti-inflammatory drugs in plas-ma. Journal of Chromatography B: Biomedical Sci-ences and Applications, 1990, 533, 125–132.
https://doi.org/10.1016/S0378-4347(00)82192-1
Elsinghorst, P.W.; Kinzig, M.; Rodamer, M.; Holzgrabe, U.; Sörgel, F. An LC-MS/MS procedure for the quantification of naproxen in human plasma: de-velopment, validation, comparison with other meth-ods, and application to a pharmacokinetic study. Journal of Chromatography B, 2011, 879 (19), 1686–1696.
https://doi.org/10.1016/j.jchromb.2011.04.012
Suryanarayanan, V.; Zhang, Y.; Yoshihara, S.; Shira-kashi, T. Voltammetric Assay of Naproxen in Pharma-ceutical Formulations Using Boron-Doped Diamond Electrode. Electroanalysis, 2005, 17 (11), 925–932.
https://doi.org/10.1002/elan.200403205
Mirceski, V.; Gulaboski, R. Recent achievements in square-wave voltammetry (a review). Maced. J. Chem. Chem. Eng., 2014, 33 (1), 1–12.
http://dx.doi.org/10.20450/mjcce.2014.515
Gulaboski, R.; Mirceski, V. Application of Voltamme-try in Biomedicine-Recent Achievements in Enzymatic Voltammetry. Maced. J. Chem. Chem. Eng., 2020, 39 (2), 1–14. http://dx.doi.org/10.20450/mjcce.2020.2152
Güngör,Ö.; Ben Ali Hassine, C.; Burç, M.; Titretir Duran, S. Voltammetric Determination of Resveratrol Using Poly(L-Phenylalanine)-Modified Gold Elec-trode. Maced. J. Chem. Chem. Eng., 2020, 39 (2), 177–184. http://dx.doi.org/10.20450/mjcce.2020.2073
Kanoute, G.; Nivaud, E.; Paulet, B.; Boucly, P. Dos-age de derives de l’acide phenylpropionique: a activite pharmacologique par titrage coulometrique. Talanta, 1984, 31 (2), 144–146.
https://doi.org/10.1016/0039-9140(84)80035-1
Adhoum, N.; Monser, L.; Toumi, M.; Boujlel, K. De-termination of naproxen in pharmaceuticals by differ-ential pulse voltammetry at a platinum electrode. Ana-lytica Chimica Acta, 2003, 495 (1–2), 69–75.
https://doi.org/10.1016/S0003-2670(03)00922-X
Fonseca, W. T.; Santos, R. F.; Alves, J. N.; Ribeiro, S. D.; Takeuchi, R. M.; Santos, A. L.; Assunção, R. M. N.; Filho, G. R.; Muñoz, R. A. A. Square-wave volt-ammetry as analytical tool for real-time study of con-trolled naproxen releasing from cellulose derivative materials. Electroanalysis, 2015, 27 (8), 1847–1854.
https://doi.org/10.1002/elan.201500011
Lima, A. B.; Faria, E. O.; Montes, R. H. O.; Cunha, R. R.; Richter, E. M.; Munoz, R. A. A.; dos Santos, W. T. P. Electrochemical oxidation of ibuprofen and its volt-ammetric determination at a boron-doped diamond electrode. Electroanalysis, 2013, 25 (7), 1585–1588.
https://doi.org/10.1002/elan.201300014
Afkhami, A.; Kafrashi, F.; Ahmadi, M.; Madrakian, T. A new chiral electrochemical sensor for the enantiose-lective recognition of naproxen enantiomers using L-cysteine selfassembled over gold nanoparticles on a gold electrode. RSC Advances, 2015, 5 (72), 58609–58615. https://doi.org/10.1039/C5RA07396K
Stefano, J. S.; de Lima, A. P.; Montes, R. H. O.; Rich-ter, E. M.; Muñoz, R. A. A. Fast determination of naproxen in pharmaceutical formulations by batch in-jection analysis with pulsed amperometric detection. Journal of the Brazilian Chemical Society, 2012, 23 (10), 1834–1838.
Afzali, M.; Jahromi, Z.; Nekooie, R. Sensitive volt-ammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchemical Journal, 2019, 145, 373–379.
https://doi.org/10.1016/j.microc.2018.10.046
Aguilar-Lira, G. Y.; Álvarez Romero, G. A.; Rojas-Hernández, A.; Páez-Hernández, M. E.; Rodríguez-Ávila, J. A.; Romero-Romo, M. A. Voltammetric anal-ysis of naproxen in graphite electrodes and its deter-mination in pharmaceutical samples. Electroanalysis, 2014, 26 (7), 1573–1581.
https://doi.org/10.1002/elan.201400119
Aguilar-Lira, G. Y.; Álvarez-Romero, G. A.; Rojas-Hernández, A.; Páez-Hernández, M. E.; Rodríguez-Ávila, J. A.; Romero-Romo, M. A. New insights on naproxen quantification using voltammetry and graph-ite electrodes development of an optimized and com-petitive methodology. ECS Transactions, 2015, 64 (45), 79–89.
Montes, R. H. O.; Stefano, J. S.; Richter, E. M.; Munoz, R. A. A. Exploring multiwalled carbon nano-tubes for naproxen detection. Electroanalysis, 2014, 26 (7), 1449–1453. https://doi.org/10.1002/elan.201400113
Montes, R. H. O.; Lima, A. P.; Cunha, R. R.; Guedes, T. J.; dos Santos, W. T. P.; Nossol, E.; Richter, E. M.; Munoz, R. A. A. Size effects of multi-walled carbon nanotubes on the electrochemical oxidation of propi-onic acid derivative drugs: ibuprofen and naproxen. Journal of Electroanalytical Chemistry, 2016, 775, 342–349. https://doi.org/10.1016/j.jelechem.2016.06.026
Qian, L.; Raj Thiruppathi, A.; Elmahdy, R.; van der Zalm, J.; Chen, A. Graphene-Oxide-Based Electro-chemical Sensors for the Sensitive Detection of Phar-maceutical Drug Naproxen. Sensors, 2020, 20, 1252.
https://doi.org/10.3390/s20051252
Norouzi, P.; Dousty, F.; Ganjali, M.R.; Daneshgar, P. Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formula-tion and biological fluid. International Journal of Electrochemical Science, 2009, 4, 1373–1386.
Tashkhourian, J.; Hemmateenejad, B.; Beigizadeh, H.; Hosseini-Sarvari, M.; Razmi, Z. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electro-chemical techniques. Journal of Electroanalytical Chemistry, 2014, 714–715, 103–108.
https://doi.org/10.1016/j.jelechem.2013.12.026
Sarhangzadeh, K. Application of multi wall carbon nanotube-graphene hybrid for voltammetric determi-nation of naproxen. Journal of the Iranian Chemical Society, 2015, 12 (12) 2133–2140.
https://doi.org/10.1007/s13738-015-0690-0
Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Pro-gress in Preparation, Processing and Applications of Polyaniline. Progress in Polymer Science, 2009, 34 (8), 783–810. https://doi.org/10.1016/j.progpolymsci.2009.04.003
Statistics for Analytical Chemistry, Miller, J. C., Miller, J. N., Eds.; New York: Halsted Press, 1984.
Development and validation of analytical methods, Riley, C. M., Rosanske, T. W., Eds.; New York: Else-vier Science Inc., 1996.
Downloads
Published
Versions
- 2022-06-30 (2)
- 2022-05-21 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Öznur GÜNGÖR
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.