Environmentally-friendly preparation of chitosan microspheres and encapsulation studies of cinnamaldehyde: Тowards convenient sustained release system for cinnamaldehyde


  • Elif Karacan Yeldir Canakkale Onsekiz Mart University
  • Ayhan Oral Canakkale Onsekiz Mart University




chitosan, cinnamaldehyde, sustained release, microspheres


Chitosan, a biodegradable and biocompatible polysaccharide, is a biopolymer with high potential for biomedical applications. In the scope of this study, chitosan microcapsules were prepared via a green method, without using any surfactants or crosslinkers. Cinnamaldehyde encapsulated microspheres were obtained by the same method and characterized by FTIR spectroscopy, XRD spectroscopy, and SEM. The release study of encapsulated cinnamaldehyde was carried out in a pH 7.4 phosphate buffered saline (PBS) at 37 °C. The amount of cinnamaldehyde released was analyzed using UV-Vis spectroscopy and GC/MS-MS. Accordingly, it was found that 350 mg of cinnamaldehyde was encapsulated per gram of chitosan, and the maximum amount of cinnamaldehyde released into the PBS medium was about 8 ppm. In addition, the release was seen to continue when the buffer was renewed. It is thought that the obtained cinnamaldehyde encapsulated chitosan microspheres could be used as a sustained release system.


R. Jayakumar, M. Prabaharan, S. V. Nair, H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications, Biotechnol. Adv. (2010).

DOI: https://doi.org/10.1016/j.biotechadv.2009.11.001.

F. Casanova, B. N. Estevinho, L. Santos, Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery, Powder Technol., 297, 44–9 (2016).

DOI: https://doi.org/10.1016/j.powtec.2016.04.014.

L. Baldino, S. Cardea, I. De Marco, E. Reverchon, Chitosan scaffolds formation by a supercritical freeze extraction process, J. Supercrit Fluids, 90, 27–34 (2014). DOI: https://doi.org/10.1016/j.supflu.2014.03.002.

U. Siripatrawan, W. Vitchayakitti, Improving functional properties of chitosan films to be used as active food packaging by incorporation with propolis, Food Hydrocoll, (2016).

DOI: https://doi.org/10.1016/j.foodhyd.2016.06.001.

M. Z. Elsabee, H. F. Naguib, R. E. Morsi, Chitosan based nanofibers, review, Mater Sci. Eng. C, 2012.

DOI: https://doi.org/10.1016/j.msec.2012.05.009.

D. Archana, J. Dutta, P. K. Dutta, Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies, Int. J. Biol. Macromol., 57, 193–203 (2013).

DOI: https://doi.org/10.1016/j.ijbiomac.2013.03.002.

X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hu, Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties, Acta Biomater., 5, 2693–703 (2009).

DOI: https://doi.org/10.1016/j.actbio.2009.03.005.

C. A. Cust Odio, M. T. Cerqueira, A. P. Marques, R. L. Reis, J. F. Mano, Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration, Biomaterials, (2014).

DOI: https://doi.org/10.1016/j.biomaterials.2014.11.047.

J. K. Suh, H. W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review, Biomaterials, 21, 2589–98 (2000).

H. Sashiwa, S. I. Aiba, Chemically modified chitin and chitosan as biomaterials, Prog. Polym. Sci., 29, 887–908 (2004).

DOI: https://doi.org/10.1016/j.progpolymsci.2004.04.001.

G. Li, L. Zhang, C. Wang, X. Zhao, C. Zhu, Y. Zheng, et al., Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration, Carbohydr. Polym., 101, 718–26 (2014).

DOI: https://doi.org/10.1016/j.carbpol.2013.09.064.

J. Wang, L. Wang, H. Yu, A. Zain-ul, Y. Chen, Q. Chen, et al. Recent progress on synthesis, property and application of modified chitosan: An overview. Int. J. Biol. Macromol., 88, 333–44 (2016).

DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.002.

A. Bernkop-Schnürch, S. Dünnhaupt, Chitosan-based drug delivery systems, Eur. J. Pharm. Biopharm., 81, 463–9 (2012). DOI: https://doi.org/10.1016/j.ejpb.2012.04.007.

B. Jung, P. Theato, Chitosan and chitosan derivatives in drug delivery and tissue engineering, Adv. Polym. Sci., 1–34 (2012). DOI: https://doi.org/10.1007/12.

S. F. Hosseini, M. Zandi, M. Rezaei, F. Farah¬mandghavi, Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study, Carbohydr. Polym., 95, 50–6 (2013).

DOI: https://doi.org/10.1016/j.carbpol.2013.02.031.

P. Suppakul, Cinnamaldehyde and Eugenol. Elsevier Inc., 2016.

DOI: https://doi.org/10.1016/B978-0-12-800723-5.00039-5.

P. A. Ponce Cevallos, M. P. Buera, B. E. Elizalde, Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability, J. Food Eng., 99, 70–5 (2010).

DOI: https://doi.org/10.1016/j.jfoodeng.2010.01.039.

Y. Sun, M. Zhang, B. Bhandari, B. Bai, Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application, Food Control, 127, 108151 (2021).

DOI: https://doi.org/10.1016/j.foodcont.2021.108151.

K. A. Rieger, J. D. Schiffman, Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers, Carbohydr. Polym., 113, 561–8 (2014).

DOI: https://doi.org/10.1016/j.carbpol.2014.06.075.

I. N. Ghosh, S. D. Patil, T. K. Sharma, S. K. Srivastava, R. Pathania, N. K. Navani, Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications, Int. J. Nanomedicine, 8, 4721-4731 (2013).

DOI: https://doi.org/10.2147/IJN.S49649.

E. N. Faikoh, Y. H. Hong, S. Y. Hu, Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae, Fish Shellfish Immunol, 2014.

DOI: https://doi.org/10.1016/j.fsi.2014.02.024.

B. Muhoza, S. Xia, J. Cai, X. Zhang, Duhoranimana E, Su J. Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation, and enhanced thermal stability, Food Hydrocoll, 2019.

DOI: https://doi.org/10.1016/j.foodhyd.2018.08.051.

W. Chen, F. Cheng, C. J. Swing, S. Xia, X. Zhang, Modulation effect of core-wall ratio on the stability and antibacterial activity of cinnamaldehyde liposomes, Chem. Phys. Lipids, 2019.

DOI: https://doi.org/10.1016/j.chemphyslip.2019.104790.

Y. Kawamura, H. Yoshida, S. Asai, I. Kurahashi, H. Tanibe, Effects of chitosan concentration and precipitation bath concentration on the material properties of porous crosslinked chitosan beads, Sep. Sci. Technol., 32, 1959–74 (1997).

DOI: https://doi.org/10.1080/01496399708000748.

T. Swaroopa Rani, S. R. Nadendla, K. Bardhan, J. Madhuprakash, A. R. Podile, Chitosan conjugates, microspheres, and nanoparticles with potential agrochemical activity, Agrochemical Detection, Treatment and Remediation (Pesticides and Chemical Fertilizers), 437-464 2020.

DOI: https://doi.org/10.1016/b978-0-08-103017-2.00017-9.

P. Subhaswaraj, S. Barik, C. Macha, P. V. Chiranjeevi, B. Siddhardha, Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. LWT, 97, 752-759 (2018).

DOI: https://doi.org/10.1016/j.lwt.2018.08.011.

K. I. Matshetshe, S. Parani, S. M. Manki, O. S. Oluwafemi, Preparation, characterization and in vitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil, Int. J. Biol. Macromol., 118, 676–82 (2018).

DOI: https://doi.org/10.1016/j.ijbiomac.2018.06.125.

A. Shetta, J. Kegere, W. Mamdouh, Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities, Int. J. Biol. Macromol, 2019.

DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.161.

Siti Nur Ashakirin, Minaketan Tripathy, Umesh Kumar Patil ABAM. Chemistry and bioactivity of cinnamal-dehyde: a natural molecule of medicinal ımportance, Int. J. Pharm. Sci. Res., 8, 2333–40 (2017).

DOI: https://doi.org/10.13040/IJPSR.0975-8232.8(6).2333-40.

A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products (A volume in International Series of Monographs on Organic Chemistry), Pergamon, ISBN 9780080136158, (1964)


R. A. Mauricio-Sánchez, Salazar R, Luna-Bárcenas JG, Mendoza-Galván A. FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning, Vib. Spectrosc., 2018.

DOI: https://doi.org/10.1016/j.vibspec.2017.10.005.

K. V. Harish Prashanth, F. S. Kittur, R. N. Tharanathan, Solid state structure of chitosan prepared under different N-deacetylating conditions, Carbohydr. Polym., 50, 27–33 (2002).

DOI: https://doi.org/10.1016/S0144-8617(01)00371-X.

K. T. Trifković, N. Z. Milašinović, V. B. Djordjević, M. T. K. Krušić, Z. D. Knežević-Jugović, V. A. Nedović, et al., Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols, Carbohydr. Polym., 2014.

DOI: https://doi.org/10.1016/j.carbpol.2014.05.053.

M. Ji, X. Sun, X. Guo, W. Zhu, J. Wu, L. Chen, et al., Green synthesis, characterization and in vitro release of cinnamaldehyde/sodium alginate/chitosan nanoparticles, Food Hydrocoll, 90, 515–22 (2019).

DOI: https://doi.org/10.1016/J.FOODHYD.2018.12.027.

A. Loquercio, E. Castell-Perez, C. Gomes, R. G. Moreira, Preparation of Chitosan-Alginate Nanoparticles for Trans-cinnamaldehyde Entrapment, J. Food Sci., 80, N2305–15 (2015).

DOI: https://doi.org/10.1111/1750-3841.12997.




How to Cite

Karacan Yeldir, E., & Oral, A. (2021). Environmentally-friendly preparation of chitosan microspheres and encapsulation studies of cinnamaldehyde: Тowards convenient sustained release system for cinnamaldehyde. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 253–261. https://doi.org/10.20450/mjcce.2021.2407