Synthesis and characterization of novel 1,2,3-triazole-bridged oxime polyurethanes obtained from an isomannide derivative
DOI:
https://doi.org/10.20450/mjcce.2021.2220Keywords:
poly(oxime-urethane), polyurethane, 1, 6-hexamethylene diisocyanate, isomannide, azide, dioxime, 2, 3-triazoleAbstract
Polyurethanes (PUs) are synthesized by the reaction of diisocyanates and diols and are widely used in furniture foams, thermal insulation, coatings, and adhesives. In this work, a 1,2,3-triazole-bridged dioxime (compound 6) as a diol source was synthesized from isomannide via tosylation, azidation, and cyclization-addition and used in the syntheses of new PUs. A new carbohydrate-based linear P-1 was synthesized by the reaction of 6 and 1,6-hexamethylene diisocyanate (1,6-HMDI). Besides, three new linear PUs (P-2, P-3, and P-4) were synthesized by the reaction of 6, isomannide compound (used in different molar ratios), and 1,6-HMDI. The thermal properties of the new PUs were determined by thermogravimetry (TG), their molecular structures were characterized by FTIR, 1H- and 13C-NMR, and the molecular weights of some polymers were determined by GPC/SEC. Additionally, the surface characteristics of the synthesized PUs were examined via scanning electron microscopy (SEM).
References
F. Zafar, S. Eram, Polyurethane, InTech, 978-953-51-0726-2, Croatia (2012).
S. L. Cooper, J. Guan, Advances in Polyurethane Biomaterials, Woodhead Publishing, 0081006225, 2016.
M. Ionescu, Chemistry and Technology of Polyols for Polyurethanes, iSmithers Rapra Publishing, 978-1-84735-035-0, United Kingdom, 2005.
N. Kébir, S. Nouigues, P. Moranne, F. Burel, Nonisocyanate thermoplastic polyurethane elastomers based on poly(ethylene glycol) prepared through the transurethanization approach, Journal of Applied Polymer Science, 134 (45), 44991 (2017).
DOI: doi.org/10.1002/app.44991
L. Jiang, Z. Ren, W. Zhao, W. Liu, H. Liu, C. Zhu, Synthesis and structure/properties characterizations of four polyurethane model hard segments, Royal Society Open Science, 5 (7), 180536 (2018).
DOI: doi.org/10.1098/rsos.180536
J. Pavličević, M. Špírková, O. Bera, M. Jovičić, K. M. Szécsényi, J. Budinski-Simendić, The influence of bentonite and montmorillonite addition on thermal decomposition of novel polyurethane/organoclay nanocomposites, Macedonian Journal of Chemistry and Chemical Engineering, 32 (2), 319–330 (2013).
DOI: dx.doi.org/10.20450/mjcce.2013.442
N. Adam, G. Avar, H. Blankenheim, W. Friederichs, M. Giersig, E. Weigand, M. Halfmann, F. W. Wittbecker, D. R. Larimer, U. Maier, Polyurethanes, Ullmann's Encyclopedia of İndustrial Chemistry, 29, 546–600 (2000).
L. Nagy, M. Nagy, B. Vadkerti, L. Daróczi, G. Deák, M. Zsuga, S. Kéki, Designed polyurethanes for potential biomedical and pharmaceutical applications: Novel synthetic strategy for preparing sucrose containing biocompatible and biodegradable polyurethane networks, Polymers, 11 (5), 825 (2019).
DOI: doi.org/10.3390/polym11050825
J. Pavličević, M. Špírková, S. Sinadinović-Fišer, J. Budinski-Simendić, O. Govedarica, M., Janković, The influence of organoclays on the morphology, phase separation and thermal properties of polycarbonate-based polyurethane hybrid materials, Macedonian Journal of Chemistry and Chemical Engineering, 32 (1), 151–161 (2013). DOI: dx.doi.org/10.20450/mjcce.2013.144
J. A. Galbis, M. d. G. García-Martín, M. V. De Paz, E. Galbis, Synthetic polymers from sugar-based monomers, Chemical Reviews, 116 (3), 1600–1636 (2015).
DOI: doi.org/10.1021/acs.chemrev.5b00242
M. M’sahel, A. Elmahdi, R. Medimagh, E. Drockenmuller, M. Said Zina, Synthesis and charac-terization of novel biosourced building blocks from isosorbide, Designed Monomers and Polymers, 19 (2), 108–118 (2016).
DOI: doi.org/10.1080/15685551.2015.1124317
M. D. Zenner, Y. Xia, J. S. Chen, M. R. Kessler, Polyurethanes from isosorbide-based diisocyanates, ChemSusChem, 6 (7), 1182–1185 (2013).
DOI: doi.org/10.1002/cssc.201300126
F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, J.-P. Pascault, Polymers from renewable 1,4: 3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review, Progress in Polymer Science, 35 (5), 578–622 (2010). DOI: doi.org/10.1016/j.progpolymsci.2009.10.001
J. A. Galbis, M. De Gracia García-Martín, M. V. De Paz, E. Galbis, Bio‐Based Polyurethanes from Carbo¬hydrate Monomers. Yılmaz, F., InTech, 978-953-51-3546-3, United Kingdom, (2017).
M.-Y. Lu, A. Surányi, B. Viskolcz, B. Fiser, Molecular design of sugar-based polyurethanes, Croatica Chemica Acta, 91 (3), 1–9 (2018).
DOI: doi.org/10.5562/cca3328
R. Garcon, C. Clerk, J.-P. Gesson, J. Bordado, T. Nunes, S. Caroco, P. Gomes, M. M. Da Piedade, A. Rauter, Synthesis of novel polyurethanes from sugars and 1, 6-hexamethylene diisocyanate, Carbohydrate Polymers, 45 (2), 123–127 (2001).
DOI: doi.org/10.1016/S0144-8617(00)00323-4
G. Jin, J. Zhang, D. Fu, J. Wu, S. Cao, One-pot, three-component synthesis of 1,4,5-trisubstituted 1,2,3-triazoles starting from primary alcohols, European Journal of Organic Chemistry, 2012 (28), 5446–5449 (2012). DOI: doi.org/10.1002/ejoc.201200830
H. Singh, J. Sindhu, J. M. Khurana, Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU-H2O catalytic system, RSC Advances, 3 (44), 22360–22366 (2013).
DOI: 10.1039/C3RA44440F
S. Kantheti, R. Narayan, K. Raju, The impact of 1,2,3-triazoles in the design of functional coatings, RSC Advances, 5 (5), 3687–3708 (2015).
DOI: 10.1039/C4RA12739K
E. Halay, E. Ay, E. Şalva, K. Ay, T. Karayıldırım, Synthesis of triazolylmethyl-linked nucleoside analogs via combination of azidofuranoses with propargylated nucleobases and study on their cytotoxicity, Chemistry of Heterocyclic Compounds, 54 (2), 158–166 (2018). DOI: doi.org/10.1007/s10593-018-2248-4
J. Huo, H. Hu, M. Zhang, X. Hu, M. Chen, D. Chen, J. Liu, G. Xiao, Y. Wang, Z. Wen, A mini review of the synthesis of poly-1,2,3-triazole-based functional mate-rials, RSC Advances, 7 (4), 2281–2287 (2017).
DOI: 10.1039/C6RA27012C
K. Ay, B. Ispartaloğlu, E. Halay, E. Ay, İ. Yaşa, T. Karayıldırım, Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry, Medicinal Chemistry Research, 26 (7), 1497–1505, (2017).
DOI: doi.org/10.1007/s00044-017-1864-3
S. G. Agalave, S. R. Maujan, V. S. Pore, Click chemistry: 1,2,3-triazoles as pharmacophores, Chemistry – An Asian Journal, 6 (10), 2696–2718 (2011).
DOI: doi.org/10.1002/asia.201100432
I. F. Cottrell, D. Hands, P. G. Houghton, G. R. Humphrey, S. H. Wright, An improved procedure for the preparation of 1-benzyl-1H-1,2,3-triazoles from benzyl azides, Journal of Heterocyclic Chemistry, 28 (2), 301–304 (1991). DOI: doi.org/10.1002/jhet.5570280216
A. Paula Freitas, M. Fernanda, J. Proença, B. L. Booth, Synthesis of 5-azido-4-cyanoimidazole and its reaction with active methylene compounds, Journal of Heterocyclic Chemistry, 32 (2), 457–462 (1995).
DOI: doi.org/10.1002/jhet.5570320212
C. Besset, S. Binauld, M. Ibert, P. Fuertes, J.-P. Pascault, E. Fleury, J. Bernard, E. Drockenmuller, Copper-catalyzed vs thermal step growth polymerization of starch-derived α-azide-ω-alkyne dianhydrohexitol stereoisomers: to click or not to click?, Macromolecules, 43 (1), 17–19 (2009). DOI: doi.org/10.1021/ma9024784
C. Besset, J. Bernard, E. Fleury, J.-P. Pascault, P. Cassagnau, E. Drockenmuller, R. J. Williams, Bio-sourced networks from thermal polyaddition of a starch-derived α-azide-ω-alkyne AB monomer with an A2B2 aliphatic cross-linker, Macromolecules, 43 (13), 5672–5678 (2010). DOI: doi.org/10.1021/ma100770t
W.-X. Liu, C. Zhang, H. Zhang, N. Zhao, Z.-X. Yu, J. Xu, Oxime-based and catalyst-free dynamic covalent polyurethanes, Journal of the American Chemical Society, 139 (25), 8678–8684 (2017).
DOI: doi.org/10.1021/jacs.7b03967
H. Goldschmidt, Zur Kenntniss der Oxime, Berichte der Deutschen Chemischen Gesellschaft, 22 (2), 3101–3114 (1889). DOI: doi.org/10.1002/cber.188902202241
T. W. Campbell, V. S. Foldi, R. G. Parrish, Condensation polymers from diisocyanates and dioximes, Journal of Applied Polymer Science, 2 (4), 81–85 (1959).
DOI: doi.org/10.1002/app.1959.070020412
S. I. Hong, T. Kurosaki, M. Okawara, Syntheses of polyurethanes derived from oximes and their photodegradation, Journal of Polymer Science, Part A-1: Polymer Chemistry, 10 (11), 3405–3419 (1972).
DOI: doi.org/10.1002/pol.1972.170101125
E. C. Buruiana, M. Olaru, B. C. Simionescu, Photobase-generating new polyurethanes with oxime-urethane groups in the main chain, Journal of Applied Polymer Science, 94 (6), 2324–2332 (2004).
DOI: doi.org/10.1002/app.21194
W.-X. Liu, Z. Yang, Z. Qiao, L. Zhang, N. Zhao, S. Luo, J. Xu, Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds, Nature Communications, 10 (1), 1–8 (2019).
DOI: doi.org/10.1038/s41467-019-12766-6
L.-Y. Chen, S. Guillarme, C. Saluzzo, Dianhydro¬hexitols: new tools for organocatalysis. Application in enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes, ARKIVOC, 3, 227–244 (2013).
DOI: doi.org/10.3998/ark.5550190.0014.318
T. G. Barros, S. Pinheiro, J. Williamson, A. Tanuri, M. Gomes Jr, H. S. Pereira, R. Brindeiro, J. B. Neto, O. Antunes, E. M. Muri, Pseudo-peptides derived from isomannide: inhibitors of serine proteases, Amino Acids, 38 (3), 701–709 (2010).
DOI: doi.org/10.1007/s00726-009-0273-4
M. Beldi, R. Medimagh, S. Chatti, S. Marque, D. Prim, A. Loupy, F. Delolme, Characterization of cyclic and non-cyclic poly-(ether-urethane)s bio-based sugar diols by a combination of MALDI-TOF and NMR, European Polymer Journal, 43 (8), 3415–3433 (2007).
DOI: doi.org/10.1016/j.eurpolymj.2007.06.003
H.-J. Kim, M.-S. Kang, J. C. Knowles, M.-S. Gong, Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly (tetramethylene glycol) and their properties, Journal of Biomaterials Applications, 29 (3), 454–464 (2014).
DOI: doi.org/10.1177/0885328214533737
Z. S. Petrović, Polyurethanes from vegetable oils, Polymer Reviews, 48 (1), 109–155 (2008).
DOI: doi.org/10.1080/15583720701834224
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.