Bioactive components and antioxidant, antiproliferative, and antihyperglycemic activities of wild cornelian cherry (Cornus mas l.)

Authors

  • Božana Odžaković Faculty of Technology, University of Banja Luka
  • Pero Sailović Faculty of Technology, University of Banja Luka
  • Darko Bodroža Faculty of Technology, University of Banja Luka
  • Vesna Kojić Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad
  • Dimitar Jakimov Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad
  • Zoran Kukrić Faculty of Technology, University of Banja Luka

DOI:

https://doi.org/10.20450/mjcce.2021.2417

Keywords:

cornelian cherry, polyphenolic compound, vitamin C, bioactivity

Abstract

The contents of polyphenolic components (total polyphenols, flavonoids, and monomeric anthocyanins) and vitamin C, and the bioactive potential (antioxidant, antiproliferative, and antihyperglycemic activities) of wild cornelian cherry were determined. Samples were collected from four different locations in Bosnia and Herzegovina. Sample CC3 from Drinić had the highest monomeric anthocyanin content (1.40 mg CyGE/g FW) and the highest inhibition of free radicals (IC50DPPH = 262.19 mg/ml; IC50ABTS = 76.78 mg/ml; IC50OH˙ = 102.31 mg/ml) and inhibition of breast adenocarcinoma cell line growth (IC50MCF-7 = 1.37 mg/ml). Sample CC4 from Drvar showed the highest total polyphenol (55.92 mg GAE/g DW) and vitamin C (88.74 mg/g FW) contents. Sample CC4 significantly inhibited the growth of cervix epithelioid carcinoma (IC50HeLa = 0.62 mg/ml) and lung adenocarcinoma (IC50A549 = 0.48 mg/ml) cell lines, and α-glucosidase (IC50AGHA = 0.466 mg/ml). Wild cornelian cherry could be used as a functional food with beneficial pro-health properties.

References

1 B. M. Popović, B. Blagojević, R. Ždero Pavlović, N. Mićić, S. Bijelić, B. Bogdanović, A. Mišan, M. M. D. Duarte, A. T. Sera, Comparison between polyphenol pro-file and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia – from raw data to PCA analysis, Food Chem., 302, e125373 (2020). DOI: https://doi.org/10.1016/j.foodchem.2019.125373

2 B. Blagojević, D. Agić, A. T. Serra, S. Matić, M. Ma-tovina, S. Bijelić, B. M. Popović, An in vitro and in silico evaluation of bioactive potential of cornelian cherry (Cor-nus mas L.) extracts rich in polyphenols and iridoids, Food Chem., 335, e127619 (2021).

DOI: https://doi.org/10.1016/j.foodchem.2020.127619

3 H. Hassanpour, Y. Hamidoghli, J. Hajilo, M. Adlipour, Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran, Sci. Hortic., 129, 459–463 (2011).

DOI: https://doi:10.1016/j.scienta.2011.04.017

4 A. Martinović, I. Cavoski, The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds, Food Chem., 318, e126549 (2020).

DOI: https://doi.org/10.1016/j.foodchem.2020.126549

5 G. E, Pantelidis, M. Vasilakakis, G. A. Manganaris, G. Diamantidis, Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries, Food Chem., 102, 777–783 (2007).

DOI: https://doi:10.1016/j.foodchem.2006.06.021

6 B. M. Popović, D. Štajner, K. Slavko, B. Sandra, Antiox-idant capacity of cornelian cherry (Cornus mas L.) – Comparison between permanganate reducing antioxidant capacity and other antioxidant methods, Food Chem., 134, 734–741 (2012).

DOI: https://dx.doi.org/10.1016/j.foodchem.2012.02.170

7 O. M. Szczepaniak, J. Kobus‑Cisowska, W. Kusek, M. Przeor, Functional properties of cornelian cherry (Cornus mas L.): a comprehensive review. Eur. Food Res. Tech-nol., 245, 2071–2087 (2019a).

DOI: https://doi.org/10.1007/s00217-019-03313-0

8 B. Dinda, A. M. Kyriakopoulos, S. Dinda, V. Zoumpour-lis, N. S. Thomaidis, A. Velegraki, C. Markopoulos, M. Dinda, Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Eth-nomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharm., 193, 670–690 (2016). DOI: https://doi.org/10.1016/j.jep.2016.09.042

9 B. Moldovan, A. Filip, S. Clichici, R. Suharoschi, P. Bolfa, L. David, Antioxidant activity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects, J. Funct. Foods, 26, 77–87 (2016). DOI: https://dx.doi.org/10.1016/j.jff.2016.07.004

10 M. Kazimierski, J. Regula, M. Molska, Cornelian cherry (Cornus mas L.) – characteristics, nutritional and pro-health properties, Acta Sci. Pol. Technol. Aliment., 18 (1), 5–12 (2019).

DOI: https://dx.doi.org/10.17306/J.AFS.2019.0628

11 S. Cosmulescu, I. Trandafir, V. Nour, Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties, Int. J. Food Prop., 20 (12), 3124–3134 (2017).

DOI:https://doi.org/10.1080/10942912.2016.1274906

12 J. Orsavová, I. Hlaváčová, J. Mlček, L. Snopek, L. Mišurcová, Contribution of phenolic compounds, ascor-bic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits, Food Chem., 284, 323–333 (2019).

DOI: https://doi.org/10.1016/j.foodchem.2019.01.072

13 K. Šavikin, G. Zdunić, T. Janković, T. Stanojković, Z. Juranić, N. Menković, In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria, Nat. Prod. Res., 23 (18), 1731–1739 (2009).

DOI: https://doi: 10.1080/14786410802267650

14 B. Yousefi, M. Abasi, M. M. Abbasi, R. Jahanban-Esfahlan, Anti-proliferative properties of Cornus mas fruit in different human cancer cells, Asian Pac. J. Cancer Prev., 16 (14), 5727–5731 (2015).

DOI: https://dx.doi.org/10.7314/APJCP.2015.16.14.5727

15 A. Tiptiri-Kourpeti, E. Fitsiou, K. Spyridopoulou, S. Vasileiadis, C. Iliopoulos, A. Galanis, S. Vekiari, A. Pappa, K. Chlichlia, Evaluation of antioxidant and anti-proliferative properties of Cornus mas L. fruit juice, Anti-oxidants, 8 (9), e377 (2019).

DOI: https://doi.org/10.3390/antiox8090377

16 M. Jazić, Z. Kukrić, J. Vulić, D. Četojević-Simin, Poly-phenolic composition, antioxidant and antiproliferative ef-fects of wild and cultivated blackberries (Rubus fruticosus L.) pomace, Int. J. Food Sci. Technol., 54, 194–201 (2019). DOI: https://doi:10.1111/ijfs.13923

17 A. A. L. Ordoñez, J. D. Gomez, M. A. Vattuone, M. I. Isla, Antioxidant activities of Sechium edule (Jacq.) Swartz extracts, Food Chem., 97 (3), 452–458(2006). DOI: https://doi:10.1016/j.foodchem.2005.05.024

18 C. M. Liyana-Pathiranan, F. Shahidi, Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions, J. Agric. Food Chem., 53, 2433–2440 (2005).

DOI: https://doi:10.1021/jf049320i

19 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26 (9–10), 1231–1237 (1999). DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

20 V. Tumbas Šaponjac, A. Girones-Vilaplana, S. Djilas, P. Mena, G. Ćetković, D. A. Moreno, J. Čanadanović Brunet, J. Vulić, S. Stajčić, M. Krunić, Anthocyanin pro-files and biological properties of caneberry (Rubus spp.) press residues, J. Sci. Food Agric., 94, 2393–2400 (2014). DOI: https://doi: 10.1002/jsfa.6564

21 A. S. Milenković-Andjelković, M. Z. Andjelković, A. N. Radovanović, B. C. Radovanović, V. Nikolić, Phenol composition, DPPH radical scavenging and antimicrobial activity of cornelian cherry (Cornus mas) fruit and leaf extracts, Hem. Ind., 69 (4), 331–337 (2015). DOI: https://doi: 10.2298/HEMIND140216046M

22 A. Z. Kucharska, A. Sokół-Łętowska, N. Piórecki, Mor-phological, physical & chemical, and antioxidant profiles of polish varieties of cornelian cherry fruit (Cornus mas L.), ZYWN-Nauk. Technol. Ja., 3 (76), 78–89 (2011). DOI: https://DOI: 10.15193/zntj/2011/76/078-089

23 K. U. Yilmaz, S. Ercisli, Y. Zengin, M. Sengul, E. Y. Kafkas, Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties, Food Chem., 114, 408–412 (2009).

DOI: https://doi:10.1016/j.foodchem.2008.09.055

24 S. Tural, I. Koca, Physico-chemical and antioxidant prop-erties of cornelian cherry fruits (Cornus mas L.) grown in Turkey, Sci. Hortic., 116, 362–366 (2008).

DOI: https://doi:10.1016/j.scienta.2008.02.003

25 J. Cetkovská, P. Diviš, M. Vespalcová, J. Pořízka, V. Řezníček, Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic, Acta Aliment., 44 (3), 357–364 (2015).

DOI: https://doi: 10.1556/AAlim.2014.0013

26 P. Drkenda, A. Spahić, A. Begić-Akagić, F. Gaši, A. Vranac, M. H. M. Blanke, Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cor-nus mas L.) in Bosnia and Herzegovina, Erwerbs-obstbau, 56 (2), 59-66 (2014).

DOI: https://DOI 10.1007/s10341-014-0203-9

27 D. Šamec, J. Piljac-Žegarac, Postharvest stability of anti-oxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures—Comparison with blackberries, white and red grapes, Sci. Hortic., 131, 15–21 (2011).

DOI: https://doi:10.1016/j.scienta.2011.09.021

28 O. M. Szczepaniak, M. Ligaj, J. Kobus-Cisowska, P. Maciejewska, M. Tichoniuk, P. Szulc, Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts, CYTA-J. Food, 17 (1), 781–789 (2019b).

DOI: https://doi: 10.1080/19476337.2019.1653378

29 J. Lee, G. Park, Y. H. Chang, Nutraceuticals and antioxi-dant properties of Lonicera japonica Thunb. as affected by heating time, Int. J. Food Prop., 22 (1), 630–645 (2019). DOI: https://doi.org/10.1080/10942912.2019.1599389

30 B. Blagojević, D. Četojević-Simin, F. Parisi, G. Lazzara, B. M. Popović Halloysite nanotubes as a carrier of cor-nelian cherry (Cornus mas L.) bioactives, LWT, 134, e110247 (2020).

DOI: https://doi.org/10.1016/j.lwt.2020.110247

31 P. Nowicka, A. Wojdyło, P. Laskowski, Inhibitory po-tential against digestive enzymes linked to obesity and type 2 diabetes and content of bioactive compounds in 20 cultivars of the peach fruit grown in Poland, Plant Foods Hum. Nutr., 7 (34), 314–320 (2018).

DOI: https://doi.org/10.1007/s11130-018-0688-8.

32 Q. You, F. Chen, X. Wang, Y. Jiang, S. Lin, Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT, 46, 164–168 (2012).

DOI: https://doi.org/10.1016/j.lwt.2011.10.011

33 C. Proença, M. Freitas, D. Ribeiro, E. F. T. Oliveira, J. L. C. Sousa, S. M. Tomé, M. J. Ramos, A. M. S. Silva, P. A. Fernandes, E. Fernandes, α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity re-lationship study. J Enzyme Inhib Med Chem, 32,1216–1228 (2017).

DOI: https://doi.org/10.1080/14756 366.2017.13685 03

Downloads

Published

2021-12-08

How to Cite

Odžaković, B., Sailović, P., Bodroža, D., Kojić, V., Jakimov, D., & Kukrić, Z. (2021). Bioactive components and antioxidant, antiproliferative, and antihyperglycemic activities of wild cornelian cherry (Cornus mas l.). Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 221–230. https://doi.org/10.20450/mjcce.2021.2417

Issue

Section

Food Chemistry