Bioactive components and antioxidant, antiproliferative, and antihyperglycemic activities of wild cornelian cherry (Cornus mas l.)
DOI:
https://doi.org/10.20450/mjcce.2021.2417Keywords:
cornelian cherry, polyphenolic compound, vitamin C, bioactivityAbstract
The contents of polyphenolic components (total polyphenols, flavonoids, and monomeric anthocyanins) and vitamin C, and the bioactive potential (antioxidant, antiproliferative, and antihyperglycemic activities) of wild cornelian cherry were determined. Samples were collected from four different locations in Bosnia and Herzegovina. Sample CC3 from Drinić had the highest monomeric anthocyanin content (1.40 mg CyGE/g FW) and the highest inhibition of free radicals (IC50DPPH = 262.19 mg/ml; IC50ABTS = 76.78 mg/ml; IC50OH˙ = 102.31 mg/ml) and inhibition of breast adenocarcinoma cell line growth (IC50MCF-7 = 1.37 mg/ml). Sample CC4 from Drvar showed the highest total polyphenol (55.92 mg GAE/g DW) and vitamin C (88.74 mg/g FW) contents. Sample CC4 significantly inhibited the growth of cervix epithelioid carcinoma (IC50HeLa = 0.62 mg/ml) and lung adenocarcinoma (IC50A549 = 0.48 mg/ml) cell lines, and α-glucosidase (IC50AGHA = 0.466 mg/ml). Wild cornelian cherry could be used as a functional food with beneficial pro-health properties.
References
1 B. M. Popović, B. Blagojević, R. Ždero Pavlović, N. Mićić, S. Bijelić, B. Bogdanović, A. Mišan, M. M. D. Duarte, A. T. Sera, Comparison between polyphenol pro-file and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia – from raw data to PCA analysis, Food Chem., 302, e125373 (2020). DOI: https://doi.org/10.1016/j.foodchem.2019.125373
2 B. Blagojević, D. Agić, A. T. Serra, S. Matić, M. Ma-tovina, S. Bijelić, B. M. Popović, An in vitro and in silico evaluation of bioactive potential of cornelian cherry (Cor-nus mas L.) extracts rich in polyphenols and iridoids, Food Chem., 335, e127619 (2021).
DOI: https://doi.org/10.1016/j.foodchem.2020.127619
3 H. Hassanpour, Y. Hamidoghli, J. Hajilo, M. Adlipour, Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran, Sci. Hortic., 129, 459–463 (2011).
DOI: https://doi:10.1016/j.scienta.2011.04.017
4 A. Martinović, I. Cavoski, The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds, Food Chem., 318, e126549 (2020).
DOI: https://doi.org/10.1016/j.foodchem.2020.126549
5 G. E, Pantelidis, M. Vasilakakis, G. A. Manganaris, G. Diamantidis, Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries, Food Chem., 102, 777–783 (2007).
DOI: https://doi:10.1016/j.foodchem.2006.06.021
6 B. M. Popović, D. Štajner, K. Slavko, B. Sandra, Antiox-idant capacity of cornelian cherry (Cornus mas L.) – Comparison between permanganate reducing antioxidant capacity and other antioxidant methods, Food Chem., 134, 734–741 (2012).
DOI: https://dx.doi.org/10.1016/j.foodchem.2012.02.170
7 O. M. Szczepaniak, J. Kobus‑Cisowska, W. Kusek, M. Przeor, Functional properties of cornelian cherry (Cornus mas L.): a comprehensive review. Eur. Food Res. Tech-nol., 245, 2071–2087 (2019a).
DOI: https://doi.org/10.1007/s00217-019-03313-0
8 B. Dinda, A. M. Kyriakopoulos, S. Dinda, V. Zoumpour-lis, N. S. Thomaidis, A. Velegraki, C. Markopoulos, M. Dinda, Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Eth-nomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharm., 193, 670–690 (2016). DOI: https://doi.org/10.1016/j.jep.2016.09.042
9 B. Moldovan, A. Filip, S. Clichici, R. Suharoschi, P. Bolfa, L. David, Antioxidant activity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects, J. Funct. Foods, 26, 77–87 (2016). DOI: https://dx.doi.org/10.1016/j.jff.2016.07.004
10 M. Kazimierski, J. Regula, M. Molska, Cornelian cherry (Cornus mas L.) – characteristics, nutritional and pro-health properties, Acta Sci. Pol. Technol. Aliment., 18 (1), 5–12 (2019).
DOI: https://dx.doi.org/10.17306/J.AFS.2019.0628
11 S. Cosmulescu, I. Trandafir, V. Nour, Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties, Int. J. Food Prop., 20 (12), 3124–3134 (2017).
DOI:https://doi.org/10.1080/10942912.2016.1274906
12 J. Orsavová, I. Hlaváčová, J. Mlček, L. Snopek, L. Mišurcová, Contribution of phenolic compounds, ascor-bic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits, Food Chem., 284, 323–333 (2019).
DOI: https://doi.org/10.1016/j.foodchem.2019.01.072
13 K. Šavikin, G. Zdunić, T. Janković, T. Stanojković, Z. Juranić, N. Menković, In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria, Nat. Prod. Res., 23 (18), 1731–1739 (2009).
DOI: https://doi: 10.1080/14786410802267650
14 B. Yousefi, M. Abasi, M. M. Abbasi, R. Jahanban-Esfahlan, Anti-proliferative properties of Cornus mas fruit in different human cancer cells, Asian Pac. J. Cancer Prev., 16 (14), 5727–5731 (2015).
DOI: https://dx.doi.org/10.7314/APJCP.2015.16.14.5727
15 A. Tiptiri-Kourpeti, E. Fitsiou, K. Spyridopoulou, S. Vasileiadis, C. Iliopoulos, A. Galanis, S. Vekiari, A. Pappa, K. Chlichlia, Evaluation of antioxidant and anti-proliferative properties of Cornus mas L. fruit juice, Anti-oxidants, 8 (9), e377 (2019).
DOI: https://doi.org/10.3390/antiox8090377
16 M. Jazić, Z. Kukrić, J. Vulić, D. Četojević-Simin, Poly-phenolic composition, antioxidant and antiproliferative ef-fects of wild and cultivated blackberries (Rubus fruticosus L.) pomace, Int. J. Food Sci. Technol., 54, 194–201 (2019). DOI: https://doi:10.1111/ijfs.13923
17 A. A. L. Ordoñez, J. D. Gomez, M. A. Vattuone, M. I. Isla, Antioxidant activities of Sechium edule (Jacq.) Swartz extracts, Food Chem., 97 (3), 452–458(2006). DOI: https://doi:10.1016/j.foodchem.2005.05.024
18 C. M. Liyana-Pathiranan, F. Shahidi, Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions, J. Agric. Food Chem., 53, 2433–2440 (2005).
DOI: https://doi:10.1021/jf049320i
19 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26 (9–10), 1231–1237 (1999). DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
20 V. Tumbas Šaponjac, A. Girones-Vilaplana, S. Djilas, P. Mena, G. Ćetković, D. A. Moreno, J. Čanadanović Brunet, J. Vulić, S. Stajčić, M. Krunić, Anthocyanin pro-files and biological properties of caneberry (Rubus spp.) press residues, J. Sci. Food Agric., 94, 2393–2400 (2014). DOI: https://doi: 10.1002/jsfa.6564
21 A. S. Milenković-Andjelković, M. Z. Andjelković, A. N. Radovanović, B. C. Radovanović, V. Nikolić, Phenol composition, DPPH radical scavenging and antimicrobial activity of cornelian cherry (Cornus mas) fruit and leaf extracts, Hem. Ind., 69 (4), 331–337 (2015). DOI: https://doi: 10.2298/HEMIND140216046M
22 A. Z. Kucharska, A. Sokół-Łętowska, N. Piórecki, Mor-phological, physical & chemical, and antioxidant profiles of polish varieties of cornelian cherry fruit (Cornus mas L.), ZYWN-Nauk. Technol. Ja., 3 (76), 78–89 (2011). DOI: https://DOI: 10.15193/zntj/2011/76/078-089
23 K. U. Yilmaz, S. Ercisli, Y. Zengin, M. Sengul, E. Y. Kafkas, Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties, Food Chem., 114, 408–412 (2009).
DOI: https://doi:10.1016/j.foodchem.2008.09.055
24 S. Tural, I. Koca, Physico-chemical and antioxidant prop-erties of cornelian cherry fruits (Cornus mas L.) grown in Turkey, Sci. Hortic., 116, 362–366 (2008).
DOI: https://doi:10.1016/j.scienta.2008.02.003
25 J. Cetkovská, P. Diviš, M. Vespalcová, J. Pořízka, V. Řezníček, Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic, Acta Aliment., 44 (3), 357–364 (2015).
DOI: https://doi: 10.1556/AAlim.2014.0013
26 P. Drkenda, A. Spahić, A. Begić-Akagić, F. Gaši, A. Vranac, M. H. M. Blanke, Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cor-nus mas L.) in Bosnia and Herzegovina, Erwerbs-obstbau, 56 (2), 59-66 (2014).
DOI: https://DOI 10.1007/s10341-014-0203-9
27 D. Šamec, J. Piljac-Žegarac, Postharvest stability of anti-oxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures—Comparison with blackberries, white and red grapes, Sci. Hortic., 131, 15–21 (2011).
DOI: https://doi:10.1016/j.scienta.2011.09.021
28 O. M. Szczepaniak, M. Ligaj, J. Kobus-Cisowska, P. Maciejewska, M. Tichoniuk, P. Szulc, Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts, CYTA-J. Food, 17 (1), 781–789 (2019b).
DOI: https://doi: 10.1080/19476337.2019.1653378
29 J. Lee, G. Park, Y. H. Chang, Nutraceuticals and antioxi-dant properties of Lonicera japonica Thunb. as affected by heating time, Int. J. Food Prop., 22 (1), 630–645 (2019). DOI: https://doi.org/10.1080/10942912.2019.1599389
30 B. Blagojević, D. Četojević-Simin, F. Parisi, G. Lazzara, B. M. Popović Halloysite nanotubes as a carrier of cor-nelian cherry (Cornus mas L.) bioactives, LWT, 134, e110247 (2020).
DOI: https://doi.org/10.1016/j.lwt.2020.110247
31 P. Nowicka, A. Wojdyło, P. Laskowski, Inhibitory po-tential against digestive enzymes linked to obesity and type 2 diabetes and content of bioactive compounds in 20 cultivars of the peach fruit grown in Poland, Plant Foods Hum. Nutr., 7 (34), 314–320 (2018).
DOI: https://doi.org/10.1007/s11130-018-0688-8.
32 Q. You, F. Chen, X. Wang, Y. Jiang, S. Lin, Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT, 46, 164–168 (2012).
DOI: https://doi.org/10.1016/j.lwt.2011.10.011
33 C. Proença, M. Freitas, D. Ribeiro, E. F. T. Oliveira, J. L. C. Sousa, S. M. Tomé, M. J. Ramos, A. M. S. Silva, P. A. Fernandes, E. Fernandes, α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity re-lationship study. J Enzyme Inhib Med Chem, 32,1216–1228 (2017).
DOI: https://doi.org/10.1080/14756 366.2017.13685 03
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.