Structural and Raman spectroscopic characterization of tetrapyridinesilver(I) perrhenate, [Agpy4]ReO4

Authors

  • Vladimir M. Petrushevski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje
  • Kende Attila Béres Research Centre for Natural Sciences, Magyar Tudósok krt. 2., Budapest and Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, 1117 Budapest
  • Petra Bombicz Research Centre for Natural Sciences, Magyar Tudósok krt. 2., Budapest
  • Attila Farkas Budapest University of Technology and Economics, Department of Organic Chemistry and Technology, Budapest
  • László Kótai Research Centre for Natural Sciences, Magyar Tudósok krt. 2., Budapest and Deuton-X Ltd, H-2030, Érd
  • Laura Bereczki Research Centre for Natural Sciences, Magyar Tudósok krt. 2., Budapest

DOI:

https://doi.org/10.20450/mjcce.2022.2490

Keywords:

crystal structure, Raman spectra , rhenium compounds, pyridine complexes, perrhenates

Abstract

Tetrapyridinesilver(I) perrhenate [Agpy4]ReO4 was synthesized, and its crystal structure and Raman spectra were elucidated at low temperatures. The crystal lattice is constructed from isolated tetrahedral cations and anions having no argentophilic interactions. Weak hydrogen bonds are formed between the oxygens of the disordered perrhenate anions and the ortho-hydrogens of the pyridine ligands. No parallel π…π stacking interactions are observed, but C-H…π interactions of the pyridine ligands within columns of cations and between the columns appeared. Correlation analysis for Ag+, pyridine ligands, and perrhenate ions was performed, and the perrhenate ion and some of the AgN4 skeleton vibrational modes and pyridine ligand modes in the Raman spectrum of [Agpy4]ReO4 were assigned.

Author Biography

Vladimir M. Petrushevski, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje

References

(1) Fogaca, L. A.; Kováts, É.; Németh, G.; Kamarás, K.; Béres, K. A.; Németh, P.; Petruševski, V.; Bereczki, L.; Holló, B. B.; Sajó, I. E., Solid-phase quasi-intramolecular redox reaction of [Ag(NH3)2]MnO4: an easy way to prepare pure AgMnO2, Inorg. Chem. 2021, 60 (6), 3749–3760.

https://doi.org/10.1021/acs.inorgchem.0c03498.

(2) Solt, H. E.; Németh, P.; Mohai, M.; Sajó, I. E.; Klébert, Sz.; Franguelli, F. P.; Fogaca, L. A.; Pawar, R. P.; Kó-tai, L., Temperature-limited synthesis of copper man-ganites along the borderline of the amor-phous/crystalline state and their catalytic activity in CO oxidation, ACS Omega 2021, 6 (2), 1523–1533.

http://doi.org/10.1021/acsomega.0c05301.

(3) Fogaca, L. A.; Bereczki, L.; Petruševski, V. M.; Holló, B. B.; Franguelli, F. P.; Mohai, M.; Béres, K. A.; Sajó, I. E.; Szilágyi, I. M.; Kotai, L., A Quasi-intramolecular solid-phase redox reaction of ammonia ligands and perchlorate anion in diamminesilver(I) perchlorate, In-organics 2021, 9 (5), 38–57 (2021).

https://doi.org/10.3390/inorganics9050038.

(4) Franguelli, F. P.; Holló, B. B.; Petruševski, V. M.; Sajó, I. E.; Klébert, Sz.; Farkas, A.; Bódis, E.; Szilágyi, I. M.; Pawar, R. P.; Kótai, L., Thermal decomposition and spectral characterization of di[carbonatotetraamminecobalt(III)] sulfate trihydrate and the nature of its thermal decomposition products, J. Therm. Anal. Calorim. 2021, 145 (9), 2907–2923. https://doi.org/10.1007/s10973-020-09991-3.

(5) Béres, K. A.; Sajó, I. E.; Lendvay, Gy.; Trif, L.; Petruševski, V. M.; Holló, B. B.; Korecz, L.; Franguelli, F. P.; Szilágyi, I. M.; Kótai, L., Solid-phase “self-hydrolysis” of [Zn(NH3)4MoO4@2H2O] involv-ing enclathrated water — An easy route to a layered basic ammonium zinc molybdate coordination poly-mer, Molecules 2021, 26 (13), 4022–4041.

https://doi.org/10.3390/molecules26134022.

(6) Franguelli, F. P.; Béres, K. A.; Kótai, L., Pyridinesilver tetraoxometallate complexes: overview of the synthe-sis, structure, and properties of pyridine complexed AgXO4 (X = Cl, Mn, Re) compounds, Inorganics 2021, 9 (11), 79–92. https://doi.org/10.3390/inorganics9110079.

(7) Holló, B. B.; Petruševski, V. M.; Kovács, G. B.; Franguelli, F. P.; Farkas, A.; Menyhárd, A.; Lendvay, Gy.; Sajó, I. E.; Bereczki, L.; Pawar, R. P.; Szilágyi, I. M.; Bódis, E.; Kótai, L., Thermal and spectroscopic studies on a double-salt-type pyridine–silver perchlo-rate complex having κ1-O coordinated perchlorate ions, J. Therm. Anal. Calorim. 2019, 138 (2), 1193–1205.

https://doi.org/10.1007/s10973-019-08663-1.

(8) Kovács, G. B.; May, N. V.; Bombicz, P. A.; Klébert, Sz.; Németh, P.; Menyhárd, A.; Novodárszki, Gy.; Petruševski, V.; Franguelli, F. P.; Magyari, J.; Béres, K.; Szilágyi, I. M.; Kótai, L., An unknown component of a selective and mild oxidant: structure and oxida-tive ability of a double salt-type complex having κ1O-coordinated permanganate anions and three- and four-fold coordinated silver cations, RSC Adv. 2019, 9 (49), 28387–28398. https://doi.org/10.1039/C9RA03230D.

(9) Kótai, L.; Fodor, J.; Jakab, E.; Sajó, I. E.; Szabó, P.; Lónyi, F.; Valyon, J.; Gács, I.; Argay, Gy.; Banerji, K. K., A thermally induced low-temperature intramolecu-lar redox reaction of bis(pyridine)silver(I) permanga-nate and its hemipyridine solvate, Transit. Met. Chem. 2006, 31 (1), 30–34. https://doi.org/10.1007/s11243-005-6322-2.

(10) Kótai, L.; Sajó, I. E.; Fodor, J.; Szabó, P.; Jakab, E.; Argay, G.; Holly, S.; Banerji, K. K., Reasons for and consequences of the mysterious behavior of newly prepared hemipyridine solvate of bis(pyridine)silver(I) permanganate, Agpy2MnO4*0.5py, Transit. Met. Chem. 2005, 30 (8), 939–943.

https://doi.org/10.1007/s11243-005-6231-4.

(11) Salaev, M. A.; Salaeva, A. A.; Vodyankina, O. V., Towards the understanding of promoting effects of Re, Cs and Cl promoters for silver catalysts of eth-ylene epoxidation: A computational study, Catalysis Today 2021, 375, 585–590.

https://doi.org/10.1016/j.cattod.2020.04.057.

(12) Ren, D.; Cheng, G.; Li, J.; Li, J.; Dai, W.; Sun, X. X.; Cheng, D., Effect of rhenium loading sequence on se-lectivity of Ag–Cs catalyst for ethylene epoxidation, Catalysis Letters 2017, 147, 2920–2928.

https://doi.org/10.1007/s10562-017-2211-5.

(13) Sajó, I. E.; Kovács, G. B.; Pasinszki, T.; Bombicz, P. A.; May, Z.; Szilágyi, I. M.; Jánosity, A.; Banerji, K. K.; Kant, R.; Kótai, L., The chemical identity of "[Ag-py2]MnO4" organic solvent-soluble oxidizing agent and new synthetic routes for the preparation of [Ag-pyn]XO4 (X = Mn, Cl, and Re, n = 2-4) complexes, J. Coord. Chem. 2018, 71 (16-18), 2884–2904.

DOI: https://doi.org/10.1080/00958972.2018.1493464.

(14) Higashi, T., Numerical Absorption Correction, NUMABS, 2002.

(15) CrystalClear SM 1.4.0 Rigaku/MSC Inc., 2008.

(16) Sheldrick, G. M., Crystal structure refinement with SHELXL, Program for Crystal Structure Refinement, University of Göttingen, Germany, Acta Cryst. 2015, C71 (1), 3–8.

https://doi.org/10.1107/S2053229614024218.

(17) Farrugia, L. J., WinGX and ORTEP for Windows: an update, J. Appl. Crystallogr. 2012, 45 (4), 849–854. https://doi.org/10.1107/S0021889812029111.

(18) Spek, A. L., Single crystal structure validation with the program PLATON, J. Appl. Cryst. 2003, 36 (1) 7–13. https://doi.org/10.1107/S0021889802022112.

(19) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Van de Streek, J., Mercury: visualization and analysis of crys-tal structures, J. Appl. Cryst. 2006, 39 (3), 453–457.

https://doi.org/10.1107/S002188980600731X.

(20) Westrip, S. P., publCIF: software for editing, validating and formatting crystallographic information files, J. Appl. Crystallog. 2010, 43 (4), 920–925.

https://doi.org/10.1107/S0021889810022120.

(21) Wilke-Dörfurt, E.; Gunzert, Th., Über neue Salze der Perrheniumsäure, Z. Anorg. Allgem. Chem. 1933, 215 (3–4), 369–387.

https://doi.org/10.1002/zaac.19332150316.

(22) Woolf, A. A., A comparison of silver perrhenate with silver perchlorate, J. Less-Common Metals. 1978, 61 (1), 151–160. https://doi.org/10.1016/0022-5088(78)90154-6.

(23) Nilsson, K.; Oskarsson, A., The crystal structure of tetrapyridinecopper(I) perchlorate and tetrapyridinesil-ver(I) perchlorate at 260 K, Acta Chem. Scand. 1982, A36 (7), 605–610.

DOI: 10.3891/acta.chem.scand.36a-0605.

(24) Bowmaker, G. A.; Effendy, Lim, K. C.; Skelton, B. W.; Sukarianingsih, D.; White, A. H., Syntheses, structures and vibrational spectroscopy of some 1:2 and 1:3 adducts of silver(I) oxyanion salts with pyridine and piperidine bases containing non-coordinating 2(,6)-substituents, Inorg. Chim: Acta 2005, 358 (14), 4342–4370. https://doi.org/10.1016/j.ica.2005.04.008.

(25) Gassman, P. L.; McCloy, J. S.; Soderquista, C. Z.; Schweiger, M. J., Raman analysis of perrhenate and pertechnetate in alkali salts and borosilicate glasses, J. Raman Spectr. 2014, 45 (1), 139–147.

DOI: 10.1002/jrs.4427.

Downloads

Additional Files

Published

2022-05-26 — Updated on 2022-06-30

Versions

How to Cite

Petrushevski, V. M., Béres, K. A., Bombicz, P. ., Farkas, A. ., Kótai, L. ., & Bereczki, L. . (2022). Structural and Raman spectroscopic characterization of tetrapyridinesilver(I) perrhenate, [Agpy4]ReO4. Macedonian Journal of Chemistry and Chemical Engineering, 41(1), 37–46. https://doi.org/10.20450/mjcce.2022.2490 (Original work published May 26, 2022)

Issue

Section

Structural Chemistry