Selenium-functionalized cyclic ethers derived from natural terpenic alcohols – biological in vitro profile


  • Kristina Mihajlovic University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
  • Vera M Divac University of Kragujevac, Faculty of Science, Department of Chemistry
  • Marina Kostic University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia.
  • Marko Zivanovic University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia.
  • Jelena Grujic University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia.
  • Katarina Virijevic University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia.



terpenic alcohols, selenium, cyclic ethers, cytotoxicity, redox status


Terpenic alcohols linalool, nerolidol and α-terpineol were subjected to the PhSe-induced cyclization, where corresponding cyclic ethers were obtained. The heterocyclic product derived from α-terpineol is a derivate of the natural product eucalyptol, while linalool cyclization produces precursors of the natural product karahanaenone. All three cyclic ether products have an organoselenium moiety in the side chain, which can represent a significant source of bioactivities. Biological evaluation of obtained products, in vitro cytotoxicity and redox status parameters, was performed on two model systems: HCT-116 – immortalized colon cancer cell line, and MRC-5 – healthy fibroblasts isolated from lung pleura. The results indicate a strong prooxidative character of all compounds on colon cancer HCT-116 and healthy MRC-5 cells in the highest applied concentrations. Selectivity towards cancer cells was not observed, except when nerolidol-derived product was used for longer exposure time. A biological evaluation was conducted to establish the quantitative relationship between enhanced radical species formation and cell viability.


(1) Breitmaier E., Terpenes: Flavors, Fragrances, Phar-maca, Pheromones. Wiley-VCH : Weinheim, Germa-ny, 2006.

(2) Kamatou, G. P. P.; Viljoen, A., Linalool – A review of a biologically active compound of commercial im-portance. Nat. Prod. Commun. 2008, 3 (7), 1183–1192. 10.1177/1934578X0800300727

(3) Peana, A. T.; D'Aquila, P. S.; Panin, F.; Serra, G.; Pip-pia, P.; Moretti, M. D. L., Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9 (8), 721–726.

(4) Peana, A. T.; D'Aquila, P. S.; Chessa, M. L.; Moretti, M. D. L.; Serra, G.; Pippia, P., (−)-Linalool produces antinociception in two experimental models of pain. Eur. J. Pharmacol. 2003, 460 (1), 37–41.

(5) De Sousa, D. P.; Nóbrega, F. F.; Santos, C. C.; De Almeida, R. N., Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral in-fluence. Nat. Prod. Commun. 2010, 5 (12), 1847–1851.

(6) Cheng, B. H.; Sheen, L. Y.; Chang, S. T., Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from cinnamomum osmophloeum ct. linalool leaves in mice. J. Tradit. Complement. Med. 2015, 5 (1), 27–34.

(7) Lopes, N. P.; Kato, M. J.; Andrade, E. H.; Maia, J. G.; Yoshida, M.; Planchart, A. R.; Katzin, A. M., Antima-larial use of volatile oil from leaves of Virola surina-mensis (Rol.) Warb. by Waiapi Amazon Indians. J. Ethnopharmacol. 1999, 67 (3), 313–319.

(8) De Meireles, A. L. P.; Dos Santos Costa, M.; Da Silva Rocha, K. A.; Gusevskaya, E. V., Heteropoly acid cat-alyzed cyclization of nerolidol and farnesol: Synthesis of α-bisabolol. Appl. Catal. A: Gen. 2015, 502, 271–275.

(9) Polovinka, M. P.; Korchagina, D. V.; Gatilov, Y. V.; Bagrianskaya, I. Y.; Barkash, V. A., Cyclization and rearrangements of farnesol and nerolidol stereoiso-mers in superacids. J. Org. Chem. 1994, 59 (6), 1509–1517.

(10) Mehl, F.; Bombarda, I.; Vanthuyne, N.; Faure, R.; Gaydou, E. M., Hemisynthesis and odour properties of β-hydroxy-γ-lactones and precursors derived from lin-alool. Food Chem. 2010, 121 (1), 98–104.

(11) Surkova, A. A.; Lozanova, A. V.; Moiseenkov, A. M., Cyclization of α-furyl methyl derivatives of linalool by "activated" DMSO. Russ. Chem. Bull. 1992, 41, 376–378.

(12) Bombarda, I.; Cezanne, L.; Gaydou, E. M., Epoxida-tion–cyclization of rosewood oxides. Flavour Fragr. J. 2004, 19 (4), 275–280.

(13) Rvović, M. D.; Divac, V. M.; Janković, N. Ž.; Bugarčić, Z. M., Cyclization of some terpenic alcohols by phenylselenoetherification reaction. Monatsh. Chem. 2013, 144 (8), 1227–1231.

(14) Kostić, M. D.; Divac, V. M.; Bugarčić, Z. M., Electro-philic selenocyclofunctionalization in the synthesis of biologically relevant molecules. Curr. Org. Chem. 2016, 20 (24), 2606–2619.

(15) Lu, Q.; Harmalkar, D. S.; Choi, Y.; Lee, K., An over-view of saturated cyclic ethers: biological profiles and synthetic strategies. In Modern Strategies for Hetero-cycle Synthesis, Favi, G., ed.; 2019, 24 (20), 3778.

(16) Organoselenium Chemistry: Between Synthesis and Biochemistry; Santi C. ed.; Bentham Science Publish-ers, 2014. DOI: 10.2174/97816080583891140101

(17) Shaaban, S.; Zarrouk, A.; Vervandier-Fasseur, D.; Al-Faiyz, Y. S.; El-Sawy, H.; Althagafi, I.; Andreoletti, P.; Cherkaoui-Malki, M., Cytoprotective organoselenium compounds for oligodendrocytes. Arab. J. Chem. 2021, 14, 103051.

(18) Chen, Z.; Lai, H.; Hou, L.; Chen, T. Rational design and action mechanisms of chemically innovative or-ganoselenium in cancer therapy. Chem. Commun. 2020, 56, 179–196.

(19) Plano, D.; Baquedano, Y.; Ibáñez, E.; Jiménez, I.; Palop, J. A.; Spallholz, J. E.; Sanmartín, C. Antioxi-dant-prooxidant properties of a new organoselenium compound library. Molecules. 2010, 15, 7292-7312.

(20) Nogueira, C. W.; Barbosa, N. V.; Rocha, J. B. T., Tox-icology and pharmacology of synthetic organoseleni-um compounds: an update. Arch. Toxicol. 2021, 95, 1179–1226.

(21) Bugarčić, Z. M.; Dunkić, J. D.; Mojsilović, B. M., A simple, convenient and expeditious approach to cine-ol. Heteroat. Chem. 2004, 15 (6), 468-470.

(22) Konstantinović, S.; Bugarčić, Z.; Marjanović, Lj.; Gojković, S.; Mihailović, M. Lj., A simple synthetic route to 2,2,5-trimethyl-4-cyclohepten-1-one (kara-hanaenone) starting with linalool. J. Serbian Chem. Soc. 1997, 62 (12), 1151–1156.

(23) Uneyama, K.; Date, T.; Torii, S. Synthesis of kara-hanaenone. J. Org. Chem. 1985, 50, 3160–3163.

(24) Romagni, J. G.; Allen, S. N.; Dayan, F. E., Allelopa-thic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 2000. 26, 303–313.

(25) Halligan, J. P., Toxic terpenes from Artemisia califor-nica. Ecology. 1975, 56 (4), 999–1003.

(26) Lawler, I. R.; Stapley, J.; Foley, W. J.; Eschler, B. M., Ecological example of conditioned flavor aversion in plant–herbivore interactions: Effect of terpenes of Eu-calyptus leaves on feeding by common ringtail and brushtail possums. J. Chem. Ecol. 1999, 25, 401–415.

(27) Santos, F. A.; Silva, R. M.; Campos, A. R.; De Araújo, R. P.; Lima Júnior, R. C. P.; Rao, V. S. N., 1,8-Cineole (eucalyptol), a monoterpene oxide attenuates the co-lonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 2004, 42 (4), 579–584.

(28) Essential Oils: A Handbook for Aromatherapy Prac-tice, Second Edition. Rhind J. P. ed.; London: Singing Dragon, 2012.

(29) Sadgrove, N. J.; Mijajlovic, S.; Tucker, D. J.; Watson, K.; Jones, G. L., Characterization and bioactivity of essential oils from novel chemotypes of Eremophila longifolia (F. Muell) (Myoporaceae): a highly valued traditional Australian medicine. Flavour Fragr. J. 2011, 26 (5), 341–350.

(30) Bugarčić, Z. M.; Mojsilović, B. M.; Divac, V. M., Fac-ile pyridine-catalyzed phenylselenoetherification of alkenols. J. Mol. Catal. A Chem. 2007, 272, 288–292.

(31) Divac, V. M.; Bugarčić, Z. M., Regio- and stereoselec-tivity in phenylselenoetherification of (Z-) and (E-) hex-4-en-1-ols. Synthesis. 2009, 21, 3684-3688.

(32) Kosarić, J. V.; Cvetković, D. V.; Živanović, M, M,; Ćurčić, M. N.; Seklić, D. G.; Bugarćić, Z. M.; Mar-ković, S. D., Antioxidative and antiproliferative evalu-ation of 2-(phenylselenomethyl)tetrahydrofuran and 2-(phenyl¬selenomethyl)tetrahydropyran. J BUON. 2014, 19 (1), 283–290.

(33) Bugarčić, Z. M.; Divac, V. M.; Kostić, M. D.; Janković, N. Ž.; Hainemann, F. W.; Radulović, N. S.; Stojanović-Radić, Z. Z., Synthesis, crystal and solution structures and antimicrobial screening of palladium(II) complexes with 2-(phenylselanylmethyl)oxolane and 2-(phenyl¬selanylmethyl)oxane as ligands. J. Inorg. Bi-ochem. 2015, 143, 9–19.

(34) Divac, M. D.; Mijatović, A. M.; Kostić, M. D.; Bogo-jevski, J. V., The interaction of organoselenium trans-palladium(II) complexes toward small-biomolecules and CT-DNA. Inorganica Chim. Acta. 2017, 466, 464–469.

(35) Petrović, A. Z.; Ćoćić, D. C.; Bockfeld, D.; Živanović, M.; Milivojević, N.; Virijević, K.; Janković, N.; Scheurer, A.; Vraneš, M.; Bogojeski, J. V. Biological activity of bis(pyrazolylpyridine) and terpiridine Os(II) complexes in the presence of biocompatible ionic liq-uids. Inorg. Chem. Front. 2021, 8, 2749–2770.



2022-06-12 — Updated on 2022-07-01


How to Cite

Mihajlovic, K., Divac, V. M., Kostic, M., Zivanovic, M., Grujic, J., & Virijevic, K. (2022). Selenium-functionalized cyclic ethers derived from natural terpenic alcohols – biological in vitro profile. Macedonian Journal of Chemistry and Chemical Engineering, 41(1), 89–98. (Original work published June 12, 2022)



Natural Products