This is an outdated version published on 2022-12-13. Read the most recent version.

Voltammetric determination of anti-malarial drug amodiaquine at a boron-doped diamond electrode surface in an anionic surfactant media

Voltammetric determination of amodiaquine

Authors

  • Sara Kurdo Kamal Department of Analytical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, 65080 Van
  • Yavuz Yardım Department of Analytical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, 65080 Van

DOI:

https://doi.org/10.20450/mjcce.2022.2565

Keywords:

Amodiaquine, Antimalarial drug, Surfactant, boron-doped diamond electrode

Abstract

In this study, the electrochemical determination of the amodiaquine (ADQ) drug was evaluated using an electrochemically pretreated boron-doped diamond (BDD) electrode due to the enhanced surface activity. The cyclic voltammogram results of ADQ were given as single reversible and diffusion-controlled peaks at +0.48 V for the oxidation peak and +0.05 V for the reduction peak (vs. Ag/AgCl) in Britton-Robinson (BR) buffer at pH 8.0. The peak potential and current signals of ADQ were evaluated at the surface of the BDD electrode using instrumental parameters to develop a simple method for ADQ detection. Also, the effect of an anionic surfactant, sodium dodecyl sulfate (SDS), on the adsorption applicability of the BDD electrode significantly increased the stripping voltammetric determination of ADQ. Under the optimal conditions chosen and employing square-wave adsorptive stripping voltammetry at the BDD electrode, ADQ was determined at + 0.34 V (vs. Ag/AgCl) at the open-circuit condition in BR buffer at pH 8.0 in the presence of 2·10–4 mol l–1 SDS. Furthermore, analytical parameters showed the linear relationship for ADQ determination in the concentration range of 0.1–20.0 μg ml–1 (2.2·10–7 – 4.3·10–5 mol l–1), with a detection limit of 0.03 μg ml–1 (6.5·10–8 mol l–1). The proposed approach can be applied to determine ADQ in water samples.

References

(1) Kwiatkowski, D. P., How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 2005, 77, 171–192.

https://doi.org/10.1086/432519.

(2) Al-Awadhi, M.; Ahmad, S.; Iqbal, J., Current status and the epidemiology of malaria in the Middle East Region and beyond. Microorganisms 2021, 9, 338.

https://doi.org/10.3390/microorganisms9020338.

(3) Cibulskis, R. E.; Alonso, P.; Aponte, J.; Aregawi, M.; Barrette, A.; Bergeron, L.; Fergus, C. A.; Knox, T.; Lynch, M.; Patouillard, E.; Schwarte, S., Malaria: glob-al progress 2000–2015 and future challenges. Infect. Dis. Poverty 2016, 5, 1–8.

https://doi.org/10.1186/s40249-016-0151-8.

(4) World Health Organization, World health statistics 2018: monitoring health for the SDGs, sustainable de-velopment goals, WHO, 2018.

(5) Baton, L. A.; Ranford-Cartwright, L. C., Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol. 2005, 21, 573–580. https://doi.org/10.1016/j.pt.2005.09.012

(6) Ashley, E. A.; Phyo, A. P., Drugs in development for malaria. Drugs 2018, 78, 861–879.

https://doi.org/10.1007/s40265-018-0911-9.

(7) Turkson, B. K.; Agyemang, A. O.; Nkrumah, D.; Nket-ia, R. I.; Baidoo, M. F.; Mensah, M. L., Treatment of malaria infection and drug resistance. In: Plasmodium Species and Drug Resistance. IntechOpen, 2021.

http://dx.doi.org/10.5772/intechopen.98373.

(8) Scholar, E., Amodiaquine. xPharm: The Comprehen-sive Pharmacology Reference 2007, 1–4.

https://doi.org/10.1016/b978-008055232-3.61219-x

(9) Fitoussi, S.; Thang, C.; Lesauvage, E.; Barré, J.; Char-ron, B.; Filali-Ansary, A.; Lameyre, V., Bioavailability of a co-formulated combination of Amodiaquine and Artesunate under fed and fasted conditions. Arzneimit-telforschung 2009, 59, 370–376.

https://doi.org/10.1055/s-0031-1296410

(10) Yeibyo, W. G., Green Chemical Synthesis of Amodia-quine. Purification and Cocrystal Formation Studies of Piperine with HIV-1 Integrase Inhibitor: Dolutegravir, PhD diss., Howard University (2020).

(11) Lai, C. S.; Nair, N. K.; Muniandy, A.; Mansor, S. M.; Olliaro, P. L.; Navaratnam, V., Validation of high-performance liquid chromatography-electrochemical detection methods with simultaneous extraction pro-cedure for the determination of artesunate, dihydroar-temisinin, amodiaquine and desethylamodiaquine in human plasma for application in clinical pharmacolog-ical studies of artesunate–amo¬diaquine drug combina-tion. J. Chromatogr. B 2009, 877, 558–562.

https://doi.org/10.1016/j.jchromb.2008.12.037

(12) Mount, D. L.; Patchen, L. C.; Nguyen-Dinh, P.; Bar-ber, A. M.; Schwartz, F. C. Churchill, Sensitive analy-sis of blood for amodiaquine and three metabolites by high-performance liquid chromatography with electro-chemical detection. J. Chromatogr. B. Biomed. Sci. Appl. 1986, 383, 375–386.

https://doi.org/10.1016/S0378-4347(00)83483-0

(13) Le Vaillant, Y.; Brenier, C.; Grange, Y.; Nicolas, A.; Bonnet, P. A.; Massing-Bias, L. R.; Rakotomanga, P.; Koumaré, B.; Mahly, A.; Absi, M.; Ciss, M., Simulta-neous determination of artesunate and amodiaquine in fixed-dose combination by a RP-HPLC method with double UV detection: implementation in interlaborato-ry study involving seven African National Quality Control Laboratories. Chromatographia 2012, 75, 617–628.

https://doi.org/10.1007/s10337-012-2241-5

(14) Sanghi, S. K.; Verma, A.; Verma, K. K., Determination of amodiaquine in pharmaceuticals by reaction with periodate and spectrophotometry or by high-performance liquid chromatography. Anal. 1990, 115, 333–335. https://doi.org/10.1039/AN9901500333

(15) Lohmann, W.; Karst, U., Generation and identification of reactive metabolites by electrochemistry and im-mobilized enzymes coupled on-line to liquid chroma-to¬graphy/mass spectrometry. Anal. Chem. 2007, 79, 6831–6839. https://doi.org/10.1021/ac071100r

(16) Johansson, T.; Jurva, U.; Grönberg, G.; Weidolf, L.; Masimirembwa, C., Novel metabolites of amodiaquine formed by CYP1A1 and CYP1B1: structure elucida-tion using electrochemistry, mass spectrometry, and NMR. Drug Metab. Dispos. 2009, 37, 571–579.

https://doi.org/10.1124/dmd.108.025171

(17) Ibrahim, F. A.; Belal, F.; El-Brashy, A., Fluorometric determination of some aminoquinoline antimalarials using eosin. Michrochem. J. 1989, 39, 65–70.

https://doi.org/10.1016/0026-265X(89)90010-6

(18) Amin, A. S.; Issa, Y. M., Conductometric and indirect AAS determination of antimalarials. J. Pharm. Bio-med. Anal. 2003, 31, 785–794.

https://doi.org/10.1016/S0731-7085(02)00334-5.

(19) Ansari, M. T.; Ansari, T. M.; Raza, A.; Ashraf, M.; Yar, Y., Spectrophotometric determination of amodia-quine and sulfadoxine in pharmaceutical preparations. Chem. Anal. 2008, 53, 305.

(20) Malongo, T. K.; Blankert, B.; Kambu, O.; Amighi, K.; Nsangu, J.; Kauffmann, J. M., Amodiaquine polymer-ic membrane electrode. J. Pharm. Biomed. Anal. 2006, 41, 70–76. https://doi.org/10.1016/j.jpba.2005.10.014

(21) Mufusama, J. P.; Hoellein, L.; Feineis, D.; Holzgrabe, U.; Bringmann, G., Capillary zone electrophoresis for the determination of amodiaquine and three of its syn-thetic impurities in pharmaceutical formulations. Elec-trophor. 2018, 39, 2530–2539.

https://doi.org/10.1002/elps.201800170

(22) Amin, N.; Blanchin, M. D.; Aké, M.; Montels, J.; Fa-bre, H., Capillary electrophoresis for the assay of fixed-dose combination tablets of artesunate and amodiaquine. Malar. J. 2012, 11, 1–7.

https://doi.org/10.1186/1475-2875-11-149.

(23) Müller, D.; Blaschke, G., Enantioselective assay of chloroquine and its main metabolite desethylchloro-quine in human plasma by capillary electrophoresis. J. Chromatogr. Sci. 2000, 38, 435–440.

https://doi.org/10.1093/chromsci/38.10.435.

(24) Mirceski, V.; Gulaboski, R., Recent achievements in square-wave voltammetry (a review). Maced. J. Chem. Chem. Eng. 2014, 33, 1–12.

http://dx.doi.org/10.20450/mjcce.2014.515

(25) Gulaboski, R.; Mirceski, V., Application of voltamme-try in biomedicine – Recent achievements in enzymat-ic volt-ammetry. Maced. J. Chem. Chem. Eng. 2020, 39, 1–14.

http://dx.doi.org/10.20450/mjcce.2020.2152

(26) Molina, A.; Gonzalez, J., Pulse Voltammetry in Physi-cal Electrochemistry and Electroanalysis, Springer, 2016.

https://doi.org/10.1007/978-3-319-21251-7

(27) Valente, C. O.; Garcia, C. A.; Alves, J. P.; Zanoni, M. V.; Stradiotto, N. R.; Arguelho, M. L., Electrochemical determination of antimalarial drug amodiaquine in ma-ternal milk using a hemin-based electrode. ECS Trans. 2012, 43, 297. https://doi.org/10.1149/1.4704970

(28) Chiwunze, T. E.; Palakollu, V. N.; Gill, A. A.; Kayamba, F.; Thapliyal, N. B.; Karpoormath, R., A highly dispersed multi-walled carbon nanotubes and poly(methyl orange) based electrochemical sensor for the determination of an anti-malarial drug: Amodia-quine. Mater. Sci. Eng. C 2019, 97, 285–292.

https://doi.org/10.1016/j.msec.2018.12.018

(29) Karakaya, S.; Kartal, B.; Dilgin, Y., Ultrasensitive voltammetric detection of an antimalarial drug (amodiaquine) at a disposable and low-cost electrode. Monatsh. Chem.-Chem Mont. 2020, 151, 1019–1026.

https://doi.org/10.1007/s00706-020-02637-y

(30) Karakaya, S.; Kartal, B.; Dilgin, Y., Development and application of a sensitive, disposable and low-cost electrochemical sensing platform for an antimalarial drug: Amodiaquine based on poly(calcein)-modified pencil graphite electrode. Int. J. Environ. Anal. Chem. 2020, 1–14. https://doi.org/10.1080/03067319.2020.1791332

(31) Unal, D. N.; Yıldırım, S.; Kurbanoglu, S.; Uslu, B., Current trends and roles of surfactants for chromato-graphic and electrochemical sensing. Trends Analyt. Chem. 2021, 144, 116418.

https://doi.org/10.1016/j.trac.2021.116418

(32) Vittal, R.; Gomathi, H.; Kim, K. J., Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv. Colloid Interface Sci. 2006, 119, 55–68. https://doi.org/10.1016/j.cis.2005.09.004

(33) Ali, H. S.; Barzani, H. A.; Yardım, Y.; Şentürk, Z., First electrochemical study of a potent antifungal drug caspofungin: Application to its enhanced voltammetric sensing based on the performance of boron-doped di-amond electrode in CTAB-mediated measurements. Diam. Relat. Mater. 2022, 125, 109031.

https://doi.org/10.1016/j.diamond.2022.109031.

(34) Shrivastav, R.; Satsangee, S. P.; Jain, R., Effect of surfactants on the voltammetric response and determi-nation of an antihypertensive drug phentolamine at boron doped diamond electrode. ECS Trans. 2013, 50, 23.

https://doi.org/10.1149/05054.0023ecst

(35) Barzani, H. A.; Ali, H. S.; Özok, H. İ.; Yardım, Y., Developing an electroanalytical procedure for the de-termination of caffeic acid phenethyl ester at a boron-doped diamond electrode by the use of cationic sur-factant media. Diam. Relat. Mater. 2022, 124, 108934.

https://doi.org/10.1016/j.diamond.2022.108934

(36) Pınar, P. T.; Şentürk, Z., Electrochemical and analyti-cal performance of cathodically pretreated boron-doped diamond electrode for the determination of ox-azolidinone antibiotic linezolid in cationic surfactant media. J. Electroanal. Chem. 2020, 878, 114681.

https://doi.org/10.1016/j.jelechem.2020.114681

(37) Allahverdiyeva, S.; Yardım, Y.; Şentürk, Z., Elec-trooxidation of tetracycline antibiotic demeclocycline at unmodified boron-doped diamond electrode and its enhancement determination in surfactant-containing media. Talanta 2021, 223, 121695.

https://doi.org/10.1016/j.talanta.2020.121695

(38) Rocha, L. R.; De Cássica Mendonça, J.; Capelari, T. B.; Medeiros, R. A.; Tarley, C. R., Development of a reliable and selective voltammetric method for deter-mination of designer drug 1-(3-chlorophenyl) pipera-zine (mCPP) using boron-doped diamond electrode and exploiting surfactant-mediated measurements. Sens. Actuators B Chem. 2020, 310, 127812 (2020).

https://doi.org/10.1016/j.snb.2020.127812

(39) Keskin, E.; Allahverdiyeva, S.; Alali, A.; Yardım, Y., Voltammetric quantification of a nonsteroidal anti-inflammatory agent diflunisal based on the enhance-ment effect of cationic surfactant on boron-doped di-amond electrode. Maced. J. Chem. Chem. Eng. 2021, 40, 11–20. https://doi.org/10.20450/MJCCE.2021.2172

(40) Levent, A.; Yardım, Y.; Şentürk, Z., Electrochemical performance of boron-doped diamond electrode in surfactant-containing media for ambroxol determina-tion. Sens. Actuators B Chem. 2014, 203, 517–526.

https://doi.org/10.1016/j.snb.2014.07.035

(41) Pınar, P. T.; Yardım, Y.; Şentürk, Z., Square-wave voltammetric sensing of lawsone (2-hydroxy-1,4-naphthoquinone) based on the enhancement effect of cationic surfactant on anodically pretreated boron-doped diamond electrode. Acta Chim. Slov. 2021, 68, 1027–1032. http://dx.doi.org/10.17344/acsi.2020.6617

(42) Mielech-Łukasiewicz, K.; Leoniuk, M., Voltammetric determination of natamycin using a cathodically pre-treated boron-doped diamond electrode in the pres-ence of sodium dodecyl sulfate. Microchem. J. 2020, 159, 105570. https://doi.org/10.1016/j.microc.2020.105570

(43) Aslışen, B.; Koçak, Ç. C.; Koçak, S., Electrochemical determination of sesamol in foods by square wave voltammetry at a boron-doped diamond electrode. Anal. Lett. 2020, 53, 343–354.

https://doi.org/10.1080/00032719.2019.1650752

(44) Muzyka, K.; Sun, J.; Fereja, T. H.; Lan, Y.; Zhang, W.; Xu, G., Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Met. 2019, 11, 397–414.

https://doi.org/10.1039/C8AY02197J

(45) Luong, J. H.; Male, K. B.; Glennon, J. D., Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 2009, 134, 1965–1979. https://doi.org/10.1039/B910206J

(46) Petković, B. B.; Ognjanović, M.; Krstić, M.; Stanković, V.; Babincev, L.; Pergal, M.; Stanković, D. M., Boron-doped diamond electrode as efficient sensing platform for simultaneous quantification of mefenamic acid and indomethacin. Diam. Relat. Mater. 2020, 105, 107785. https://doi.org/10.1016/j.diamond.2020.107785

(47) Yunusoğlu, O.; Allahverdiyeva, S.; Yardım, Y.; Şentürk, Z., A simple approach to simultaneous elec-troanalytical quantification of acetaminophen and tramadol using a boron‐doped diamond electrode in the existence of sodium dodecyl sulfate. Electroanal. 2020, 32, 429–436. https://doi.org/10.1002/elan.201900452

(48) Allahverdiyeva, S.; Keskin, E.; Pınar, P. T.; Yunus-oğlu, O.; Yardım, Y.; Şentürk, Z., Electroanalytical in-vestigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped dia-mond electrode. Diam. Relat. Mater. 2020, 108, 107962.

https://doi.org/10.1016/j.diamond.2020.107962.

(49) Plattner, S.; Erb, R.; Chervet, J. P.; Oberacher, H., Studying the reducing potencies of antioxidants with the electrochemistry inherently present in electrospray ionization-mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 213–224.

https://doi.org/10.1007/s00216-013-7445-5

(50) Hawley, S. R.; Bray, P. G.; Park, B. K.; Ward, S. A., Amodiaquine accumulation in Plasmodium falciparum as a possible explanation for its superior antimalarial activity over chloroquine. Mol. Biochem. Parasitol. 1996, 80, 15–25. https://doi.org/10.1016/0166-6851(96)02655-2

(51) Hanssen, B. L.; Siraj, S.: Wong, D. K., Recent strate-gies to minimize fouling in electrochemical detection systems, Rev. Anal. Chem., 2016, 35, 1–28.

https://doi.org/10.1515/revac-2015-0008

(52) Markarian, S. A.; Harutyunyan, L. R.; Harutyunyan, R. S., The properties of mixtures of sodium dodecyl sulfate and diethylsulfoxide in water. J. Solution Chem. 2005, 34, 361–368. https://doi.org/10.1007/s10953-005-3056-x

Downloads

Published

2022-12-13

Versions

How to Cite

Kamal, S. K., & Yardım, Y. (2022). Voltammetric determination of anti-malarial drug amodiaquine at a boron-doped diamond electrode surface in an anionic surfactant media : Voltammetric determination of amodiaquine . Macedonian Journal of Chemistry and Chemical Engineering, 41(2). https://doi.org/10.20450/mjcce.2022.2565

Issue

Section

Analytical Chemistry