Voltammetric examination of hydroquinone at ordinary and nano-architecture platinum electrodes

Authors

  • Ahmed A Al-Owais
  • Ibrahim S El-Hallag
  • Elsayed El-Mossalamy

DOI:

https://doi.org/10.20450/mjcce.2023.2677

Keywords:

hydroquinone; cyclic voltammetry; convolution transform; deconvolution transform; numerical simulation.

Abstract

The electrochemical behavior of hydroquinone was examined experimentally using cyclic voltammetry, convolution transform, and deconvolution transform at clean ordinary and nanostructured mesoporous platinum electrodes in 1 mol/l HClO4. The cyclic voltammogram of hydroquinone (HQ) at an ordinary Pt electrode displays an anodic peak at 0.610 V and a cathodic peak at 0.117 V, with a scan rate of 50 mV·s–1. Excellent linearity was recorded between the anodic or cathodic peak currents of hydroquinone and the square root of the scan rate (υ1/2). The anodic and cathodic peak potential separation (∆Ep) was found to be 463 ± 3 mV vs. the saturated calomel electrode (SCE). It was noted that the value of peak potential separation increased with increasing the scan rate. The type of electrode reaction at both platinum electrodes in 1 mol/l HClO4 was examined and discussed. The electrochemical parameters and the nature of the mechanistic pathway of the investigated HQ were determined experimentally and ascertained via a numerical simulation method. 

References

(1) Huskinson, B.; Marshak, M.; Suh, C.; Er, S.; Gerhardt, M.; Galvin, C.; Chen, X.; Guzik, A.; Roy, G.; Gordon, R.; Aziz, M., A metal-free organic–inorganic aqueous flow battery, Nature 2014, 505, 195.

https://doi.org/10.1038/nature12909

(2) Lin, K.; Chen, Q.; Gerhardt, M.; Tong, L.; Kim, S.; Eisenach, L.; Valle, A.; Hardee, D.; Gordon , R.; Michael, J.; Aziz, M. M., Alkaline quinone flow battery. Science Magazine 2015, 349, 1529.

doi:10.1126/ science.aab303

(3) Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Prakash, G.; Narayanan, S., An inexpensive aqueous flow battery for large-scal electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 2014, 161, A1371. doi:10.1149/2.1001409JES

(4) Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M .; Schubert, U., An aqueous, polymer- based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78. doi: 10.1038/nature15746

(5) Ponce de León, C.; Frías-Ferrer, A.; González-García, J.; Szánto, D. A.; Walsh, F. C., Redox flow cells for energy conversion. J. Power Sources 2006, 160, 716. https://doi.org/10.1016/j. jpowsour. 2006. 02.095

(6) Kear, G.; Shah, A.; Walsh, F., Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects. Int. J. Energy Res. 2012, 36, 1105

https://doi.org/ 10.1002/er.1863

(7) Li, L.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z.; Chen, B.; Zhang, J.; Xia, G.; Hu, J.; Graff, G,. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 2011, 1, 394. https://doi.org/10.1002/aenm.201100008

(8) Leung, P.; Li, X.; Ponce de León, C.; Berlouis, L.; John Low, C. T.; Walsh, F., Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125.

doi: https://doi.org/10.1039/C2RA21342G

(9) Nikiforidis, G.; Berlouis, L.; Hall, D.; Hodgson, D., An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery. Electrochim. Acta 2014, 115, 621.

https://doi.org/ 10.1016/j.electacta.2013.09.081

(10) Nikiforidis, G.; Berlouis, L.; Hall, D.; Hodgson, D., Evaluation of carbon composite materials for the negative electrode in the zinc–cerium redox flow cell. J. Power Sources 2012, 206, 497.

https://doi.org/10.1016/j.jpowsour.2011.01.036

(11) Leung, P.; Ponce de León, C.; Walsh, F., An undivided zinc–cerium redox flow battery operating at room temperature (295 K). Electrochem. Commun. 2011, 13, 770. https://doi.org/10.1016/j.elecom. 2011.04.011

(12) Leung, P.; Ponce-de-León, C.; Low, C. T. J.; Walsh, F., Zinc deposition and dissolution in methane sulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim. Acta. 2011, 56, 6536.

https://doi.org/10.1016/ j.electacta .2011.04.111

(13) Li, Z.; Li, S.; Liu, S.; Huang, K.; Fang, D.; Wang, F.; Peng, S., Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide. Electrochem. Solid-State Lett. 2011, 14, A171.

DOI:10.1149/2.012112ESL

(14) Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Prakash, G.; Narayanan, S., An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 2014, 161, A1371. DOI 10.1149/2.1001409jes

(15) Alt, H.; Binder, H.; Köhling, A.; Sandstede, G., Investigation into the use of quinone compounds for battery cathodes. Electrochim. Acta. 1972, 17, 873. https://doi.org/10.1016/0013-4686(72)90010-2

(16) Wang, W.; Xu, W.; Cosimbescu, L.; Choi, D.; Li, L.; Yang, Z., Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery. Chem. Commun. 2012, 48, 6669.

DOI: https://doi.org/ 10.1039/C2CC32466K

(17) Wawzonek S.; Berkey. R.; Blaha, E. W.; Runner, M. E., Polarographic studies in acetonitrile and dimethyl-formamide, III. Behavior of quinones and hydro-quinones. J. Electrochem. Soc. 1956, 103, 456.

DOI:10.1149/1.2430379.

(18) Davis, K.; Hammond, P.; Poever, M., Electron affinities of monosubstituted benzoquinonestrans. faraday soc. 1965, 61, 1516. https://doi.org/10.1039/TF9656101516

(19) Haimerl,A.; Merz, A., Catalysis of quinone-hydro-guinone redox reactions at polypyrrole benzene-sulphonate-coated platinum electrodes. J. Electroanal. Chem. 1987, 220, 55.

https://doi.org/10.1016/0022-0728(87)88004-X

(20) Bhatt, D.; Anbuchezian, M.; Balasubramanian, R.; Udhayan. R.; Venkatesan, V. K. Cyclic voltammetric study of quinone—hydroquinone organic system in aqueous magnesium perchlorate electrolyte. Journal of Power Sources. 1993, 45, 177.

https://doi.org/10.1016/0378-7753(93)87007-P

(21) Maruo, Y. Y.; Maruno, T., Tetrathiafulvalene–tetracyanoquinodimethane thin films grown by physical vapor deposition: Influence of substrate structures and substrate materials. Thin Solid Films. 2014, 554, 141. http://dx.doi.org./10.1016/j.tsf.2013.04.097

(22) Glicksman, R.; Morehouse, C., Investigation of the electrochemical characteristics of organic compounds, IV: Quinone Compounds. J. Electrochem. Soc. 1959, 106, 741.XWFwaFT65. DOI:10.1149/1.2427489

(23) Arsem,W.; US Patent No. 23 06 927. 1942

(24) Tripler, A.; McGreaw, L., An investigation of some new cathode depolarirer materials. J. Electrochem. Soc. 1958, 105, 179.

(25) Capson, A.; Parsons, R., The rate of a simple electron exchange reaction as a function of the electrode material. J. ElectroanaL Chem. 1973, 46, 215.

https://doi.org/10.1016/S0022-0728(73)80130-5

(26) Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. K. Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc. 2007, 129, 42. 12847. https://doi.org/10.1021 /ja0743083

(27) Bogeski, I.; Gulaboski, R.; Kappl, R.; Mirceski, V.; Stefova, M.; Petreska, J.; Hoth, M., Calcium binding and transport by coenzyme Q. J. Am. Chem. Soc. 2011, 133, 9293. DOI: 10.1021/ja110190t

(28) Gulaboski, R.; Markovski, V.; Jihe, Z., Redox chemistry of coenzyme Q–A. Short overview of the voltammetric features. J. Solid State Electrochem. 2016, 20, 3229. https://doi.org/10.1007 /s10008016-3230-7

(29) Gulaboski, R. The future of voltammetry. Maced. J. Chem. Chem. Eng. 2022, 41.

DOI: 10.20450/mjcce.2022.2555

(30) Gulaboski1, R.; Mirceski, V., Application of voltammetry in biomedicine – recent achievements in enzymatic voltammetry. Maced. J. Chem. Chem. Eng. 2020, 39, 153. DOI:10.20450/mjcce.2020.2152

(31) Mirceski, V.; Gulaboski, R. Recent achievement in square-wave voltammetry. A review, Maced. J. Chem. Chem. Eng. 2014, 33, 1.

DOI: https://doi.org/10.20450/mjcce.2014.515

(32) Soriaga, M.; Hubbard, A., Determination of the orientation of adsorbed molecules at solid-liquid interfaces by thin-layer electrochemistry: aromatic compounds at platinum electrodes. J. Am. Chem. Soc. 1982, 104, 2735.

https://doi. org/ 10. 1021/ ja00374a008

(33) Nicholson, R.; Shain., Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfers. Anal. Chem. 1965, 37, 178. https://doi.org/10.1021/ac60221a002

(34) EL-Hallag, I.; Asiri, A.; EL-Mossalamy, E., Data analysis and evaluation of the electro-chemical parameters for the ET process via convolutive voltammetry and digital simulation. J. Chil. Chem. Soc. 2013, 58, 1920.

http://dx.doi.org/10.4067/S0717-97072013000300028

(35) Bard, A.; Faulkner, L., Electrochem. Methods, John Wiley & Sons, New York, 1980

(36) Al-Owais, A.; El-Hallag, I.; El-Mossalamy, E., Electrochemical investigation of anthracen-9-ylme-thylene-(3,4-dimethyl-isoxazol-5-yl)-amine compound at gold electrode. Int. J. Electrochem. Sci. 2022, 17, 220917. DOI:10.20964/2022.09.19

(37) Leddy, J.; Bard, A., Polymer films on electrodes. Part XVIII: Determination of heterogeneous electron transfer kinetics at poly(vinylferrocene) and nafion/Ru(bpy)2+3 polymer-modified electrodes by convolution voltammetry. J. Electrolanal. Chem. 1985, 189, 203. https://doi.org/ 10.1016/0368-1874(85)80068-X

(38) Oldham, K., Convolution of voltammograms as a method of chemical analysis. J. Chem. Soc. Faraday Trans. 1986, 82, 1. 1099–1104.

https://doi.org/10. 1039/F19868201099

(39) Al-Owais, A.; El-Hallag, I.; El-Mossalamy, E., Voltammetric investigation of electrooxidation of methyl(E)-2-cyno(N-ethyl carbazol-2-yl) acrylate at a gold electrode. Int. J. Electrochem. Sci. 2022, 17, 220821. DOI: 10.20964/ 2022.08.08

(40) Guo,Y.; He, D.; Xie, A.; Qu, W; Tang, Y.; Zhou, L.; Zhu, R., The electrochemical oxidation of hydroquinone and catechol through a novel poly-geminal dicationic ionic liquid (PGDIL)–TiO2 composite film electrode. Polymers. 2019, 11, 1907.

https://doi.org/10.3390/polym11111907

(41) Bhatt, D.; Anbuchezian, M.; Balasubramanian, R.; Udhayan, R.; Venkatesan, V., Cyclic voltammetric study of quinone-hydroquinone organic system in aqueous magnesium perchlorate electrolyte. J. Power Sources. 1993, 45, 177. 10.1016/0378-7753(93)87007-P

(42) Yousofian-Varzaneh, H.; Zare, H. R.; Namazian, M. Application of tetrafluoro-p-hydroquinone and 3-fluorocatechol as the catholyte and cd nanoparticles as anolyte electroactive materials to manufacture of hybrid redox flow batteries. J. Electroanal. Chem. 2016, 776, 193. https://doi.org/10.1016/j.jelechem.2016.07.019

(43) Lopez da Silva, A. R.; Santos, A.; Martinez-Huitle, C. A. Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. R.S.C. Adv. 2018, 8, 3483.

https://doi.org/10.1039/C7R-A12257

Downloads

Published

2023-05-29 — Updated on 2023-07-01

Versions

How to Cite

A Al-Owais, A., S El-Hallag, I. . ., & Elsayed El-Mossalamy. (2023). Voltammetric examination of hydroquinone at ordinary and nano-architecture platinum electrodes . Macedonian Journal of Chemistry and Chemical Engineering, 42(1), 103–114. https://doi.org/10.20450/mjcce.2023.2677 (Original work published May 29, 2023)

Issue

Section

Electrochemistry