Smart textiles: Paving the way to sustainability
DOI:
https://doi.org/10.20450/mjcce.2024.2821Keywords:
smart textiles, sustainability, circular economy, end-of-life, eco-designAbstract
As an emerging technology, smart textiles can bring solutions to many problems, but also create new ones, especially related to their disposal and their impact on the environment. That is why it is important to address this problem at this stage of technological development when smart textiles have not yet pervaded the mass markets. In this article, first, an attempt is made to understand the chronological development of smart textiles: the reasons for a weak breakthrough in the commercial markets throughout the decades, starting from the 1990s until today, but also the emergence of new driving forces that should inevitably lead to a bright future for smart textiles. In addition, we explore the contemporary possibilities for sustainable materials, manufacturing techniques, and end-of-life solutions for developing sustainable smart textiles based on a broad literature review, online sources, and a questionnaire survey among textile experts. Finally, an overview of the latest developments related to the standardization of smart textiles is given. This research was spurred by participation in CONTEXT COST Action (CA17107 - European Network to connect research and innovation efforts on advanced Smart Textiles).
References
(1) Valentine, L.; Ballie, J.; Bletcher, J.; Robertson, S.; Stevenson, F., Design Thinking for Textiles: Let’s Make It Meaningful. Des. J. 2017, 20 (sup1), S964–S976. https://doi.org/10.1080/14606925.2017.1353041
(2) Kirstein, T., 1 - The Future of Smart-Textiles Devel-opment: New Enabling Technologies, Commercializa-tion and Market Trends. In Multidisciplinary Know-How for Smart-Textiles Developers; Kirstein, T., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing, 2013; pp 1–25.
https://doi.org/10.1533/9780857093530.1
(3) Shi, H. H.; Pan, Y.; Xu, L.; Feng, X.; Wang, W.; Pot-luri, P.; Hu, L.; Hasan, T.; Huang, Y. Y. S., Sustainable Electronic Textiles towards Scalable Commercializa-tion. Nat. Mater. 2023, 1–10.
https://doi.org/10.1038/s41563-023-01615-z
(4) Chen, G.; Li, Y.; Bick, M.; Chen, J., Smart Textiles for Electricity Generation. Chem. Rev. 2020, 120 (8), 3668–3720. https://doi.org/10.1021/acs.chemrev.9b00821
(5) Yin, J.; Wang, S.; Di Carlo, A.; Chang, A.; Wan, X.; Xu, J.; Xiao, X.; Chen, J., Smart Textiles for Self-Powered Biomonitoring. Med-X 2023, 1 (1), 3.
https://doi.org/10.1007/s44258-023-00001-3
(6) Eldessouki, M.; Taiar, R.; Ahram, T.; Petrik, S., Smart Textiles and Their Role in Monitoring the Body’s Fit-ness and Medical Conditions. In Human Systems En-gineering and Design; Ahram, T., Karwowski, W., Taiar, R., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, 2019; pp. 484–490. https://doi.org/10.1007/978-3-030-02053-8_74
(7) Angelucci, A.; Cavicchioli, M.; Cintorrino, I. A.; Lau-ricella, G.; Rossi, C.; Strati, S.; Aliverti, A., Smart Tex-tiles and Sensorized Garments for Physiological Moni-toring: A Review of Available Solutions and Tech-niques. Sensors 2021, 21 (3), 814.
https://doi.org/10.3390/s21030814
(8) Shi, X.; Zuo, Y.; Zhai, P.; Shen, J.; Yang, Y.; Gao, Z.; Liao, M.; Wu, J.; Wang, J.; Xu, X.; Tong, Q.; Zhang, B.; Wang, B.; Sun, X.; Zhang, L.; Pei, Q.; Jin, D.; Chen, P.; Peng, H., Large-Area Display Textiles Inte-grated with Functional Systems. Nature 2021, 591 (7849), 240–245. https://doi.org/10.1038/s41586-021-03295-8
(9) Maziz, A.; Concas, A.; Khaldi, A.; Stålhand, J.; Persson, N.-K.; Jager, E. W. H., Knitting and Weaving Artificial Muscles. Sci. Adv. 2017, 3 (1), e1600327.
https://doi.org/10.1126/sciadv.1600327
(10) Rajappan, A.; Jumet, B.; Shveda, R. A.; Decker, C. J.; Liu, Z.; Yap, T. F.; Sanchez, V.; Preston, D. J., Logic-Enabled Textiles. Proc. Natl. Acad. Sci. 2022, 119 (35), e2202118119. https://doi.org/10.1073/pnas.2202118119
(11) Ivanoska-Dacikj, A.; Stachewicz, U., Smart Textiles and Wearable Technologies – Opportunities Offered in the Fight against Pandemics in Relation to Current COVID-19 State. Rev. Adv. Mater. Sci. 2020, 59 (1), 487–505. https://doi.org/10.1515/rams-2020-0048
(12) Ivanoska-Dacikj, A.; Oguz-Gouillart, Y.; Hossain, G.; Kaplan, M.; Sivri, Ç.; Ros-Lis, J. V.; Mikucioniene, D.; Munir, M. U.; Kizildag, N.; Unal, S.; Safarik, I.; Akgül, E.; Yıldırım, N.; Bedeloğlu, A. Ç.; Ünsal, Ö. F.; Her-wig, G.; Rossi, R. M.; Wick, P.; Clement, P.; Sarac, A. S., Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innova-tions. Healthcare 2023, 11 (8), 1115.
https://doi.org/10.3390/healthcare11081115
(13) Internet-of Things_final_report_2022_staff_working_doc–ument_0.Pdf. https://competition-policy.ec.europa.eu/sys–tem/files/2022-01/internet-of-things_final_report_2022_ staff_working_document_0.pdf (accessed 2023-04-25).
(14) Veske, P.; Ilén, E., Review of the End-of-Life Solu-tions in Electronics-Based Smart Textiles. J. Text. Inst. 2021, 112 (9), 1500–1513.
https://doi.org/10.1080/00405000.2020.1825176
(15) IoT Connected Devices by Use Case 2030. Statista. https://www.statista.com/statistics/1194701/iot-connected-devices-use-case/ (accessed 2023-04-25).
(16) Grossman, P., The LifeShirt: A Multi-Function Ambu-latory System Monitoring Health, Disease, and Medi-cal Intervention in the Real World. Stud. Health Tech-nol. Inform. 2004, 108, 133–141.
(17) IST-2002-507816-MYHEART. https://www.hitech-projects. com/euprojects/myheart/home.html (accessed 2023-09-25).
(18) Sherriff, L., Levi’s and Philips create wired up cloth-ing. https://www.theregister.com/2000/08/14/levis_and_philips_create_wired/ (accessed 2023-09-25).
(19) Luts, W., Why Smart Textiles are not a dumb idea | LinkedIn. https://www.linkedin.com/pulse/why-smart-textiles-dumb-idea-lutz-walter/ (accessed 2023-09-26).
(20) PASTA Project :: ABOUT.
https://www.pastaproject.eu/about/(accessed 2023-09-25)
(21) Development of Textiles for Electrical Energy Genera-tion and Storage | Powerweave Project | Fact Sheet | FP7. CORDIS |European Commission.
https://cordis.europa.eu/project/id/281063
(accessed 2023-09-25).
(22) 1D Nanofibre Electro-Optic Networks | 1D-Neon Pro-ject | Fact Sheet | H2020. CORDIS | European Com-mission. https://cordis.europa.eu/project/id/685758
(accessed 2023-09-25).
(23) Introducing the Full Smart Textiles Value Chain Map. SmartX. https://www.smartx-europe.eu/introducing-the-full-smart-textiles-value-chain-map/(accessed 2023-09-26).
(24) Ossevoort, S. H. W., 14 - Improving the Sustainability of Smart Textiles. In Multidisciplinary Know-How for Smart-Textiles Developers; Kirstein, T., ed.; Wood-head Publishing Series in Textiles; Woodhead Publish-ing, 2013; pp 399–419.
https://doi.org/10.1533/9780857093530.3.399.
(25) Köhler, A. R.; Hilty, L. M.; Bakker, C., Prospective Impacts of Electronic Textiles on Recycling and Dis-posal. J. Ind. Ecol. 2011, 15 (4), 496–511.
https://doi.org/10.1111/j.1530-9290.2011.00358.x
(26) Niinimäki, K.; Peters, G.; Dahlbo, H.; Perry, P.; Ris-sanen, T.; Gwilt, A., The Environmental Price of Fast Fashion. Nat. Rev. Earth Environ. 2020, 1 (4), 189–200. https://doi.org/10.1038/s43017-020-0039-9
(27) Chen, X.; Memon, H. A.; Wang, Y.; Marriam, I.; Te-byetekerwa, M., Circular Economy and Sustainability of the Clothing and Textile Industry. Mater. Circ. Econ. 2021, 3 (1), 12.
https://doi.org/10.1007/s42824-021-00026-2
(28) Brown, R., The Environmental Crisis Caused by Tex-tile Waste. https://www.roadrunnerwm.com/blog/textile-waste-environmental-crisis (accessed 2023-08-24).
(29) Lawton, G., Can fashion really go green? New Sci. 2022, 254 (3389), 38–45. https://doi.org/10.1016/S0262-4079(22)00984-8.
(30) Weber, S.; Lynes, J.; Young, S. B., Fashion Interest as a Driver for Consumer Textile Waste Management: Reuse, Recycle or Disposal. Int. J. Consum. Stud. 2017, 41 (2), 207–215. https://doi.org/10.1111/ijcs.12328
(31) Gupta, R.; Kushwaha, A.; Dave, D.; Mahanta, N. R., Chapter 10 – Waste Management in Fashion and Tex-tile Industry: Recent Advances and Trends, Life-Cycle Assessment, and Circular Economy. In Emerging Trends to Approaching Zero Waste; Hussain, C. M., Singh, S., Goswami, L., eds.; Elsevier, 2022; pp. 215–242. https://doi.org/10.1016/B978-0-323-85403-0.00004-9
(32) Dulal, M.; Afroj, S.; Ahn, J.; Cho, Y.; Carr, C.; Kim, I.-D.; Karim, N., Toward Sustainable Wearable Elec-tronic Textiles. ACS Nano 2022, 16 (12), 19755–19788. https://doi.org/10.1021/acsnano.2c07723
(33) Gozde Goncu-Berk., Smart Textiles and Clothing: An Opportunity or a Threat for Sustainability? 2019, 462164 Bytes.
https://doi.org/10.17028/RD.LBORO.9724619
(34) Ylä-Mella, J.; Keiski, R. L.; Pongrácz, E., End-of-Use vs. End-of-Life: When Do Consumer Electronics Be-come Waste? Resources 2022, 11 (2), 18.
https://doi.org/10.3390/resources11020018
(35) Late Lessons from Early Warnings: The Precautionary Principle, 1896–2000; Harremoës, P., Eds.; Environ-mental issue report; European Environment Agency: Copenhagen, Denmark, 2001.
(36) 14:00-17:00. ISO 31000:2009. ISO.
https://www.iso.org/standard/43170.html
(accessed 2023-08-22).
(37) British Standard BS OHSAS 18001:2007.
(accessed 2023-08-22).
(38) Köhler, A. R.; Som, C., Risk Preventative Innovation Strategies for Emerging Technologies the Cases of Nano-Textiles and Smart Textiles. Technovation 2014, 34 (8), 420–430.
https://doi.org/10.1016/j.technovation.2013.07.002
(39) Köhler, A. R., Challenges for Eco-Design of Emerging Technologies: The Case of Electronic Textiles. Mater. Des. 2013, 51, 51–60.
https://doi.org/10.1016/j.matdes.2013.04.012
(40) Bayram, Y.; Zhou, Y.; Shim, B. S.; Xu, S.; Zhu, J.; Kotov, N. A.; Volakis, J. L., E-Textile Conductors and Polymer Composites for Conformal Lightweight An-tennas. IEEE Trans. Antennas Propag. 2010, 58 (8), 2732–2736. https://doi.org/10.1109/TAP.2010.2050439
(41) Han, J.-W.; Meyyappan, M., Copper Oxide Resistive Switching Memory for E-Textile. AIP Adv. 2011, 1 (3), 032162. https://doi.org/10.1063/1.3645967
(42) Schwarz, A.; Hakuzimana, J.; Kaczynska, A.; Banaszczyk, J.; Westbroek, P.; McAdams, E.; Moody, G.; Chronis, Y.; Priniotakis, G.; De Mey, G.; Tseles, D.; Van Langenhove, L., Gold Coated Para-Aramid Yarns through Electroless Deposition. Surf. Coat. Technol. 2010, 204 (9), 1412–1418.
https://doi.org/10.1016/j.surfcoat.2009.09.038
(43) Venezuela, J.; Dargusch, M. S., The Influence of Al-loying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review. Acta Biomater. 2019, 87, 1–40. https://doi.org/10.1016/j.actbio.2019.01.035
(44) Hermawan, H., Updates on the Research and Devel-opment of Absorbable Metals for Biomedical Applica-tions. Prog. Biomater. 2018, 7 (2), 93–110.
https://doi.org/10.1007/s40204-018-0091-4
(45) Hosseini, E. S.; Dervin, S.; Ganguly, P.; Dahiya, R., Biodegradable Materials for Sustainable Health Moni-toring Devices. ACS Appl. Bio Mater. 2021, 4 (1), 163–194. https://doi.org/10.1021/acsabm.0c01139.
(46) Park, S.-J.; Son, Y.-R.; Heo, Y.-J., Chapter 6 – Pro-spective Synthesis Approaches to Emerging Materials for Supercapacitor. In Emerging Materials for Energy Conversion and Storage; Cheong, K. Y., Impellizzeri, G., Fraga, M. A., eds.; Elsevier, 2018; pp. 185–208. https://doi.org/10.1016/B978-0-12-813794-9.00006-5
(47) Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive Polymers: Towards a Smart Biomaterial for Tissue En-gineering. Acta Biomater. 2014, 10 (6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015
(48) Afroj, S.; Tan, S.; Abdelkader, A. M.; Novoselov, K. S.; Karim, N., Highly Conductive, Scalable, and Ma-chine Washable Graphene-Based E-Textiles for Multi-functional Wearable Electronic Applications. Adv. Funct. Mater. 2020, 30 (23), 2000293.
https://doi.org/10.1002/adfm.202000293
(49) Karim, N.; Afroj, S.; Malandraki, A.; Butterworth, S.; Beach, C.; Rigout, M.; Novoselov, K. S.; Casson, A. J.; Yeates, S. G., All Inkjet-Printed Graphene-Based Conductive Patterns for Wearable e-Textile Applica-tions. J. Mater. Chem. C 2017, 5 (44), 11640–11648.
https://doi.org/10.1039/C7TC03669H
(50) Karim, N.; Afroj, S.; Tan, S.; He, P.; Fernando, A.; Carr, C.; Novoselov, K. S., Scalable Production of Graphene-Based Wearable E-Textiles. ACS Nano 2017, 11 (12), 12266–12275. https://doi.org/10.1021/acsnano.7b05921
(51) Afroj, S.; Karim, N.; Wang, Z.; Tan, S.; He, P.; Hol-will, M.; Ghazaryan, D.; Fernando, A.; Novoselov, K. S. Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique. ACS Nano 2019, 13 (4), 3847–3857.
https://doi.org/10.1021/acsnano.9b00319
(52) Beeby, S.; Arumugam, S.; Hillier, N.; Li, Y.; Shi, J.; Sun, Y.; Wagih, M.; Yong, S. 9 - Power Supply Sources for Smart Textiles. In Smart Clothes and Wearable Technology (Second Edition); McCann, J., Bryson, D., Eds.; The Textile Institute Book Series; Woodhead Publishing, 2023; pp 211–236.
https://doi.org/10.1016/B978-0-12-819526-0.00017-5.
(53) Satharasinghe, A.; Hughes-Riley, T.; Dias, T., An In-vestigation of a Wash-Durable Solar Energy Harvest-ing Textile. Prog. Photovolt. Res. Appl. 2020, 28 (6), 578–592. https://doi.org/10.1002/pip.3229.
(54) Mather, R. R.; Wilson, J. I. B., Fabrication of Photo-voltaic Textiles. Coatings 2017, 7 (5), 63.
https://doi.org/10.3390/coatings7050063
(55) Grancini, G.; Nazeeruddin, M. K., Dimensional Tailor-ing of Hybrid Perovskites for Photovoltaics. Nat. Rev. Mater. 2019, 4 (1), 4–22.
https://doi.org/10.1038/s41578-018-0065-0
(56) Forouzan, A.; Yousefzadeh, M.; Latifi, M.; Jose, R., Effect of Geometrical Parameters on Piezoresponse of Nanofibrous Wearable Piezoelectric Nanofabrics Un-der Low Impact Pressure. Macromol. Mater. Eng. 2021, 306 (1), 2000510. https://doi.org/10.1002/mame.202000510
(57) Almusallam, A.; Luo, Z.; Komolafe, A.; Yang, K.; Robinson, A.; Torah, R.; Beeby, S., Flexible Piezoe-lectric Nano-Composite Films for Kinetic Energy Har-vesting from Textiles. Nano Energy 2017, 33, 146–156. https://doi.org/10.1016/j.nanoen.2017.01.037
(58) Kashfi, M.; Fakhri, P.; Amini, B.; Yavari, N.; Rashidi, B.; Kong, L.; Bagherzadeh, R., A Novel Approach to Determining Piezoelectric Properties of Nanogenera-tors Based on PVDF Nanofibers Using Iterative Finite Element Simulation for Walking Energy Harvesting. J. Ind. Text. 2022, 51 (1_suppl), 531S-553S.
https://doi.org/10.1177/1528083720926493
(59) Jian, G.; Meng, Q.; Jiao, Y.; Feng, L.; Shao, H.; Wang, F.; Meng, F., Hybrid PDMS-TiO2-Stainless Steel Tex-tiles for Triboelectric Nanogenerators. Chem. Eng. J. 2021, 417, 127974.
https://doi.org/10.1016/j.cej.2020.127974
(60) Feng, P.-Y.; Xia, Z.; Sun, B.; Jing, X.; Li, H.; Tao, X.; Mi, H.-Y.; Liu, Y., Enhancing the Performance of Fab-ric-Based Triboelectric Nanogenerators by Structural and Chemical Modification. ACS Appl. Mater. Inter-faces 2021, 13 (14), 16916–16927.
https://doi.org/10.1021/acsami.1c02815
(61) Kim, M.-O.; Pyo, S.; Song, G.; Kim, W.; Oh, Y.; Park, C.; Park, C.; Kim, J., Humidity-Resistant, Fabric-Based, Wearable Triboelectric Energy Harvester by Treatment of Hydrophobic Self-Assembled Monolay-ers. Adv. Mater. Technol. 2018, 3 (7), 1800048.
https://doi.org/10.1002/admt.201800048
(62) Lu, Z.; Zhang, H.; Mao, C.; Li, C. M., Silk Fabric-Based Wearable Thermoelectric Generator for Energy Harvesting from the Human Body. Appl. Energy 2016, 164, 57–63. https://doi.org/10.1016/j.apenergy.2015.11.038
(63) Song, H.; Qiu, Y.; Wang, Y.; Cai, K.; Li, D.; Deng, Y.; He, J., Polymer/Carbon Nanotube Composite Materials for Flexible Thermoelectric Power Generator. Compos. Sci. Technol. 2017, 153, 71–83.
https://doi.org/10.1016/j.compscitech.2017.10.006
(64) Ikeda, H.; Khan, F.; Veluswamy, P.; Sakamoto, S.; Navaneethan, M.; Shimomura, M.; Murakami, K.; Hayakawa, Y., Thermoelectric Characteristics of Nanocrystalline ZnO Grown on Fabrics for Wearable Power Generator. J. Phys. Conf. Ser. 2018, 1052 (1), 012017. https://doi.org/10.1088/1742-6596/1052/1/012017
(65) Dolez, P. I., Energy Harvesting Materials and Struc-tures for Smart Textile Applications: Recent Progress and Path Forward. Sensors 2021, 21 (18), 6297.
https://doi.org/10.3390/s21186297
(66) Review No 04/2021: EU Actions and Existing Chal-lenges on Electronic Waste. European Court of Audi-tors. http://www.eca.europa.eu/en/Pages/Report.aspx?did=58526&TermStoreId=8935807f-8495-4a93-a302-f4b76776d8ea&TermSetId=49e662c4-f172-43ae-8a5e-7276133de92c&TermId=5f6589a2-5a2e-4ae8-8cc6-e05bf544b71f (accessed 2023-12-13).
(67) OEKO-TEX® STANDARD 100. https://www.oeko-tex.com/en/our-standards/oeko-tex-standard-100
(accessed 2023-12-13).
(68) 14:00-17:00. ISO/TR 23383:2020. ISO.
https://www.iso.org/standard/75383.html
(accessed 2023-11-15).
(69) SIS-CEN/TR 17945:2023 - Textiles and textile prod-ucts - Textiles with integrated electronics and ICT – Definitions, categorisation, applications and stand-ardisation needs (Swedish Standard).
https://webstore.ansi.org/standards/sis/siscentr179452023 (accessed 2023-11-15).
Downloads
Published
Versions
- 2024-05-20 (2)
- 2024-05-08 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Aleksandra Ivanoska-Dacikj, Lutz Walter, Karin Eufinger, Ariadna Detrell, Yesim Oguz Gouillart, Enrico Venturini, Raul Fangueiro, Daniela Zavec, Paulo Cadeia, Vincent Nierstrasz, Bruno Mougin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.