Preparation and properties of natural rubber/organo-montmorillonite: from lab samples to bulk material


  • Aleksandra Ivanoska-Dacikj Faculty of Technology and Metallurgy, Ss Cyril and Methodius University, Skopje
  • Gordana Bogoeva-Gaceva Faculty of Technology and Metallurgy, Ss Cyril and Methodius University, Skopje
  • Aleksandra Buzarovska Faculty of Technology and Metallurgy, Ss Cyril and Methodius University, Skopje
  • Igor Gjorgjiev Institute of Earthquake Engineering and Engineering Seismology, IZIIS, Ss Cyril and Methodius University, Skopje
  • Luljeta Raka Faculty of Natural Sciences and Mathematics, State University of Tetovo, Tetovo



organo-montmorillonite, nanocomposites, natural rubber, dynamic properties


Focusing on application aspects of the rubber nanocomposites and the production and testing of industrial-sized samples, this study was performed in two phases. First, natural rubber (NR)/organo-montmorillonite (OMMT) nanocomposites containing 2–14 phr OMMT were prepared on a laboratory-sized two-roll mill. The vulcanization behavior and mechanical properties of NR/OMMT composites were compared with a referent NR compound containing 60 phr carbon black (N330) as a reinforcing filler. The x-ray diffraction (XRD) analyses showed a predominant intercalated structure for all OMMT nanocomposites. As a result, the organoclay behaved as an effective reinforcement for NR, even at loadings as low as 2 phr. This nanocomposite exhibited an improvement in tensile strength of 29% and in elongation at break of 61% in comparison with the referent NR/N330 compound. With the estimated optimal filler content, in the second phase, bulk NR/OMMT-5/steel samples were successfully produced for dynamic testing. The dynamic moduli were investigated by the method of forced vibrations. Compared to the NR/N 330 samples, NR/OMMT-5 samples showed improved hysteresis, with very low dissipating energy per cycle and significantly reduced Mullins effect.


G. Sui, Processing and material characteristics of a carbon-nanotube reinforced natural rubber, Macromol. Mat. Eng., 292(9), 1020–1026 (2007).

L. Bokobza, M. Kolodziej, On the use of carbon nano-tubes as reinforcing fillers for elastomeric materials, Polym. Inter., 55(9), 1090–1098 (2006).

M. Kolodziej, L. Bokobza, J. L. Bruneel, Investiga-tions on natural rubber filled with multiwall carbon nanotubes, Comp. Interfaces, 14(3), 215–228 (2007).

Q. Zhao, R. Tannenbaum, K. J. Jacob, Carbon nano-tubes as Raman sensors of vulcanization in natural rubber, Carbon, 44(9), 1740–1745 (2006).

S. Rooj, A. Das, K. W. Stöckelhuber, N. Mukhopadhyay, A. R. Bhattacharyya, D. Jehnichen, G. Heinrich, Pre-intercalation of long chain fatty acid in the interlayer space of layered silicates and preparation of montmorillonite/natural rubber nanocomposites. App. Clay Sci., 67–68, 50–56 (2012).

M. Bhattacharyaa, S. Biswasa, S. Bandyopadhyayb, A. K. Bhowmicka, Influence of the nanofiller type and content on permeation characteristics of multifunctional NR nanocomposites and their modeling, Polym. for Advan. Tech., 23(3), 596–610 (2012).

N. Tabsan, S. Wirasate, K. Suchiva, Abrasion behavior of layered silicate reinforced natural rubber, Wear, 269, 394–404 (2010).

K. N. Madhusoodanan, S. Varghese, Technological and processing properties of natural rubber layered silicate-nanocomposites by melt intercalation process. J. Appl. Polym. Sci., 102(3), 2537–2543 (2006).

W. G. Hwang, K. H. Wei, C. M. Wu, Mechanical, ther-mal, and barrier properties of NBR/organosilicate nanocomposites, Polym. Eng. Sci., 44(11), 2117–2124 (2004).

A. Das, R. Jurk, K. W. Stöckelhuber, P. S. Majumder, T. Engelhardt, J. Fritzsche, M. Klüpopel, G. Heinrich, Processing and properties of nanocomposites based on layered silicate and carboxylated nitrile rubber, J. Macromol. Sci. A Pure Appl. Chem., 46, 7–15 (2009).

A. Das, K. W. Stöckelhuber, R. Jurk, D. Jehnichen, G. Heinrich, A general approach to rubber–montmorillonite nanocomposites: Intercalation of stearic acid, Appl. Clay Sci., 51, 117–125 (2011).

T. Pojanavaraphan, D. A. Schiraldi, R. Magaraphan, Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freezedrying, Appl. Clay Sci., 50, 271–279 (2010).

P. Li, L. Yin, G. Song, J. Sun, L. Wang, H. Wang, High-performance EPDM/organoclay nanocomposites by melt extrusion, Appl. Clay Sci., 40, 38–44 (2008).

S. Rooj, A. Das, G. Heinrich, Preintercalation of an organic accelerator into nanogalleries and preparation of ethylene propylene diene terpolymer rubber–clay nanocomposites, Polym. J., 243, 285–292 (2011a).

M. A. Lόpez-Manchado, B. Herrero, M. Arroyo, Organoclay-natural rubber nanocomposites synthesized by mechanical and solution mixing methods, Polym. Inter., 53(11), 1766–1772 (2004).

Z. Gu, G. Song, W. Liu, B. Wang, J. Li, Preparation and properties of organo-montmorillonite/cis-1,4-polybuta¬diene rubber nanocomposites by solution intercalation, Appl. Clay Sci., 45(1), 50–53 (2009).

K. Kueseng, K. I. Jacob, Natural rubber nanocompo-sites with SiC nanoparticles and carbon nanotubes, Euro. Polym. J., 42(1), 220–227 (2006).

Y. P. Wu, L. Q. Zhang, Y. Q. Wang, Structure of carboxylated acrylonitrile-butadiene rubber (CNBR)-clay nanocomposites by co-coagulating rubber latex and clay aqueous suspensions, J. Appl. Polym. Sci., 82(11), 2842–2848 (2001).

S. Varghese, J. Karger-Kocsis, Natural rubber-based nanocomposites by latex compounding with layered silicates, Polym., 44(17), 4921-4927 (2003).

Y. P. Wu, Y. Q. Wang, H. F. Zhang, Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspensions, Comp. Sci. Tech., 65(7–8), 1195–1202 (2005).

S. Varghese, J. Karger-Kocsis, K. G. Gatos, Melt com-pounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships, Polym., 44(14), 3977–3983 (2003).

S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza. Organi-cally modified layered silicates as reinforcing fillers for natural rubber, Chem. Mat., 14(10), 4202–4208 (2002).

R. Magaraphan, W. Thaijaroen, R. Lim-Ochakun, Structure and properties of natural rubber and modified montmorillonite nanocomposites, Rubb. Chem. Tech., 76(2), 406–418 (2003).

S. Varghese, J. Karger-Kocsis, Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin, J. Appl. Polym. Sci., 91(2), 813–819 (2004).

R. J. Schaefer, Mechanical Properties of Rubber, in: Harris' Shock and Vibration Handbook, Sixth edition, A. Piersol, T. Paez (Eds), McGraw-Hill Companies Inc., 2010, pp. 33.1–33.18.

R. Verdejo, M. Hernandez, N. Bitnis, J. M. Kenny, M. A. Lopez-Manchando, Vulcanization characteristics and curing kinetics of rubber-organoclay nanocomposites, in: Rubber Clay Nanocomposites – Science, Technology and Applications, M. Galimberti (ed), New York, Wiley and Sons, 2011, pp. 275–303.

M. A. Kader, K. Kim, Y. S. Lee, C. Nah, Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending, J. Mater. Sci., 41, 7341–7352 (2006).

M. Arroyo, M. A. Lόpez-Manchado, B. Herrero, Organo-montmorillonite as substitute of carbon black in natural rubber compounds, Polym., 44(8), 2447–2453 (2003).

P. Zhang, G. S. Huang, X. A. Wang, Y. J. Nie, L. L. Qu, The influence of montmorillonite on the anti-reversion in the rubber-cly composites. J. Appl. Polym. Sci., 118(1), 306–311 (2010).

J. Diez, R. Bellas, C. Ramirez, A. Rodriguez, Effects of organoclay reinforcement on the curing characteristics and technological propeties of SBR sulphur vulcanizates. J Appl Polym Sci, 118(1), 556–573 (2010).

L. Ghasemi, M. Karrabi, M. Mohammadi, H. Azizi, Evaluating the effects of processing conditions and organoclay content on the properties of styrene-butadiene rubber/organoclay nanocomposites by re-sponse surface methodology. Express Polym. Lett., 4(2), 62–70 (2010).

S. Chakraborty, S. Kar, S. Dasgupta, R. Mukhopad-hyay, S. Bandyopadhyay, M. Joshi, S. C. Ameta, Study of the properties of in-situ sodium activated and organomodified bentonite clay – SBR rubber nanocomposites. Part I: Characterization and rheometric properties, Polym. Testing, 29, 81–187 (2010).

M. A. López-Manchado, J. L. Valentin, J. Carretero, F. Barroso, M. Arroyo, Rubber network in elastomer nanocomposites, Euro. Polym. J., 43(10), 4143–4150 (2001).

S. Rooj, A. Das, K.W. Stöckelhuber, N. Mukhopad-hyay, A. R. Bhattacharyya, D. Jehnichen. G. Heinrich, Pre-intercalation of long chain fatty acid in the interlayer space of layered silicates and preparation of montmorillonite/natural rubber nanocomposites, Appl. Clay Sci., 67–68, 50–56 (2012).

G. Zheng, S. Guojun, L. Weisheng, W. Baojin, L. Jin, Preparation and properties of organo-montmoril-lonite/cis-1,4-polybutadiene rubber nanocomposites by solution intercalation, Appl. Clay Sci., 45, 50–53 (2009).

E. Kazina, O. Starkova, A. Aniskevich, Volume changes in filled rubber under uniaxial cyclic loading, Mat. Sci., 17, 272–275 (2011).

G. Hubery, T. A. Vilgisy, G. Heinrich, Universal properties in the dynamical deformation of filled rubbers, J. Phy.: Condense Matter, 8, L409–L412 (1996).

D. E. Hall, J. C. Moreland, Fundamentals of rolling resistance, Rubb. Chem. and Tech., 74 (3), 525–539 (2001).

A. C. Harwood, A. R. Payne, Stress softening in natu-ral rubber vulcanizates, III: Carbon black filled vulcanizates, Appl. Polym. Sci., 10, 315–323 (1966).




How to Cite

Ivanoska-Dacikj, A., Bogoeva-Gaceva, G., Buzarovska, A., Gjorgjiev, I., & Raka, L. (2014). Preparation and properties of natural rubber/organo-montmorillonite: from lab samples to bulk material. Macedonian Journal of Chemistry and Chemical Engineering, 33(2), 249–265.




Most read articles by the same author(s)

> >>