The effect of matrix morphology on dynamic-mechanical properties of polypropylene/layered silicate nanocomposites


  • Gordana Bogoeva-Gaceva Faculty of Technology and Metallurgy, University Ss. Cyril & Methodius
  • Lujleta Raka State University, Tetovo
  • Andrea Sorrentino Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Piazzale Enrico Fermi 1, Portici, Napoli



polypropylene, clay, nanocomposites, morphology, DMTA


In this work, the influence on the morphology and viscoelastic behavior of polypropylene/clay nanocomposites of clay, in combination with different crystallization rates applied in compression molding, is reported. By deconvolution of differential scanning calorimetry (DSC) melting endotherms, it was found that the slowly cooled samples had slightly higher melting temperatures, and the crystal dimensions decreased progressively with the clay content; while, in contrast, the presence of clay particles had no influence on the crystal dimensions in fast-cooled samples. Dynamic mechanical thermal analysis (DMTA) has shown that above the glass transition temperature, nanocomposites obtained by slow cooling exhibited better mechanical response compared to the fast-cooled samples. The value of dynamic modulus E’ of slow-cooled samples increased by ~55 % with addition of only 1 wt% clay, which was attributed to the better reinforcing effect achieved during prolonged time of crystallization. 



V. Kumar, A. Singh, Polypropylene clay nanocomposites, Rev. Chem. Eng., 29 (6), 439–448 (2013).

M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials, Mater. Sci. Eng: Review, 28, 1–63 (2000). DOI: 10.1016/S0927-796X(00)00012-7

K. Prashantha, J. Soulestin, M. F. Lacrampe, P. Krawczak, Present status and key challenges of carbon nanotubes reinforced polyolefins: A review on nano-composites manufacturing and performance issues. Polym. Polym. Compos., 17, 205–245 (2009).

Z. Shi, X. Gao, D. Song, Y. Zhou, D. Yan, Preparation of poly(-caprolactone) grafted titanate nanotubes, Pol-ymer, 48, 7516–7522 (2007).


A. Sorrentino, R. Pantani, V. Brucato, Injection molding of syndiotactic polystyrene/clay nanocomposites, Polym. Eng. Sci., 46 (12), 1768–1777 (2006).

DOI: 10.1002/pen.20650

S. P. Bao, S. C. Tjong, Mechanical behaviors of poly-propylene/carbon nanotube nanocomposites: The effects of loading rate and temperature, Mater. Sci. Eng, A 485: 508–516 (2008).


K. Prashantha, J. Soulestin, M. F. Lacrampe, P. Krawczak, G. Dupin, M. Claes, Masterbatch-based multiwalled carbon nanotube filled polypropylene nano-composites: Assessment of rheological and mechanical properties, Compos. Sci. Technol., 69, 1756–1763 (2009). DOI:

K. Prashantha, J. Soulestin, M. F. Lacrampe, P. Krawczak, G. Dupin, M. Claes, Taguchi analysis of shrinkage and warpage of injection-moulded polypro-pylene/multi¬wall carbon nanotubes nanocomposites, Ex-press Polym. Lett., 3, 630–638 (2009). DOI: 10.3144/expresspolymlett.2009.79

H. Zhang, Z. Zhang, Impact behaviour of polypropylene filled with multi-walled carbon nanotubes, Eur. Polym J., 43, 3197–3207 (2007).


M. A. López Manchado, L. Valentini, J. Biagiotti, J. M. Kenny, Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites pre-pared by melt processing, Carbon, 43, 1499–1505 (2005). DOI:

J. Hári, Z. Dominkovics, E. Fekete, B. Pukánszky, Ki-netics of structure formation in PP/layered silicate nanocomposites, Express Polym. Lett., 3, 692–702 (2009), 10.3144/expresspolymlett.2009.87.

A. C. Chinellato, S. E. Vidotti, G-H. Hu, L. A. Pessan, Compatibilizing effect of acrylic acid modified polypro-pylene on the morphology and permeability properties of polypropylene/organoclay nanocomposites, Compos. Sci. Technol., 70, 458–465 (2010).


L. Betega de Paiva, A. R. Morales, T. Ribeiro Guimarães, Structural and optical properties of polypropylene-montmorillonite nanocomposites, Mater. Sci. Eng., A 447, 261–265 (2007).


H. U. Zaman, P. D. Hun, R. A. Khan, K. B. Yoon, Poly-propylene/clay nanocomposites: Effect of compatibilizers on the morphology, mechanical properties and crystallinity behaviors, J. Thermoplastic Compos. Mater., 27 (3), 338–349 (2014).


L. Raka, A. Sorrentino, G. Bogoeva‐Gaceva, Isothermal crystallization kinetics of polypropylene latex–based nanocomposites with organo‐modified clay, J. Polym. Sci. Part B: Polym. Phys., 48 (17), 1927–1938 (2010). DOI: 10.1002/polb.22069.

G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, G. P. Karayannidis Crystallization kinetics and nucleation ac-tivity of filler in polypropylene/surface-treated SiO2 nanocomposites, Thermochimica Acta, 427, 117–128 (2005). DOI:

Y. A. Mubarak, F. O. Abbadi, A. H. Tobgy, Effect of iron oxide nanoparticles on the morphological properties of isotactic polypropylene, J. Appl. Polym. Sci., 115, 3423–3433 (2010). DOI:10.1002/app.31374.

V. Causin, C. Marega, A. Marigo, G. Ferrara, A. Ferraro, Morphological and structural characterization of pol-ypropylene/conductive graphite nanocomposites. Eur. Polym. J., 42, 3153–3161 (2006).


K. Yang, Q. Yang, G. Li, Y. Sun, D. Feng, Morphology and mechanical properties of polypropylene/calcium car-bonate nanocomposites, Mater. Lett., 60, 805–809 (2006). DOI:

B. Hoffmann, C. Dietrich, R. Thomann, C. Friedrich, R. Mulhaupt, Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macro. Rapid. Commun., 21, 57–61 (2000). DOI: 10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E.

Y. T. Lim, O. O. Park, Phase morphology and rheologi-cal behavior of polymer/layered silicate nanocomposites, Rheol Acta, 40, 220–229 (2001).


R. Krishnamoorti, R. A. Vaia, E. P. Giannelis, Structure and dynamics of polymer-layered silicate nanocomposites, Chem. Mater., 8, 1728–1734 (1996).

DOI: 10.1021/cm960127g.

R. A. Vaia, E. P. Giannelis, Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment, Macromolecules, 30, 8000–8009 (1997). DOI: 10.1021/ma9603488.

V. Mittal, Polymer Layered Silicate Nanocomposites: A Review, Materials, 2, 992–1057 (2009).

DOI: 10.3390/ma2030992

A. T. Mark, P. O. James, Ubiquity of soft glassy dynam-ics in polypropylene/clay nanocomposites, Polymer 48, 1083–1095 (2007).


K. Wang, S. Liang, P. Zhao, C. Qu, H. Tan, R. Du, Q. Zhang, F. Qu, Correlation of rheology-orientation-tensile property of isotactic polypropylene organoclay nanocomposites, Acta Mater., 55, 3143–3154 (2007), DOI:

A. D. Drozdov, J. Christiansen, Cyclic viscoelastoplasticity of polypropylene/nano clay compo-sites, Mech. Time-Depend. Mater., 16, 397–425 (2012).

DOI: 10.1007/s11043-012-9169-x

M. A. Perez, B. L. Rivas, S. M. Rodriguez, A. Maldona-do, C. Venegas, Polypropylene/clay nanocomposites: Synthesis and characterization, J. Chin. Chem. Soc., 55, 440–444 (2010).

DOI: 10.4067/S0717-97072010000400006.

N. Hasegawa, H. Okamoto, M. Kato, A. Usuki, Prepara-tion and mechanical properties of polypropylene/clay hybrids based on modified polypropylene and organophilic clay, J. Appl. Polym. Sci., 78, 1918–1922 (2000), DOI: 10.1002/1097-4628(20001209)78:11<1918::AID-APP100>3.0.CO;2-H.

P. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, A. Usuki, A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites, Polymer, 42, 9633–9640 (2001).


X. Liu, Q. Whu, PP/clay nanocomposites prepared by grafting-melt intercalation, Polymer, 42, 10013–10019 (2001). DOI:

Y. Wang, F. B. Chen, K. C. Wu, Twin-screw extrusion compounding of polypropylene/organoclay nanocomposites modified by maleated polypropylenes. J. Appl. Polym. Sci., 93, 100–112 (2004).

DOI: 10.1002/app.20407.

G. Gorrasi, M. Tortora, V. Vittoria, D. Kaempfer, R. Mulhaupt, Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syn-diotactic polypropylene, Polymer, 44, 3679–3685 (2003).


S. C. Tjong, Y. Z. Meng, A. S. Hay, Novel preparation and properties of polypropylene−vermiculite nanocomposites. Chem. Mater., 14, 44–51 (2002).

DOI: 10.1021/cm010061b.

J. Ma, Z. Qi, Y. Hu, Synthesis and characterization of polypropylene/clay nanocomposites, J. Appl. Polym. Sci., 8, 3611–3617 (2001). DOI: 10.1002/app.2223

J. H. Kim, C. M. Koo, Y. S. Choi, K. H. Wang, I. J. Chung, Preparation and characterization of polypropyl-ene/layered silicate using an antioxidant, Polymer, 45, 7719–7727 (2004).


F. C. Chiu, S. M. Lai, J. W. Chen, P. H. Chu, Combined effects of clay modifications and compatibilizers on the formation and physical properties of melt-mixed poly-propylene/clay nanocomposites, J. Polym. Sci. Part. B: Polym. Phys., 42, 4139–4150 (2004).

DOI: 10.1002/polb.20271

Y. Q. Zhang, J. H. Lee, H. J. Jang, C. W. Nah, Preparing PP/clay nanocomposites using a swelling agent, Compo-sites Part B, 35, 133–138 (2004).


C. Ding, D. Jia, H. He, B. Guo, H. Hong, How organo-montmorillonite truly affects the structure and properties of polypropylene, Polym. Test., 24, 94–100 (2005).


J. I. Velasco, M. Ardanuy, V. Realinho, M. Antunes, A. I. Fernandez, J. I. Gonzalez-Pena, M. A. Rodriguez-Perez, J. A. de Saja, Polypropylene/clay nanocomposites: combined effects of clay treatment and compatibilizer polymers on the structure and properties, J. Appl. Polym. Sci., 102, 1213–1223 (2006).

DOI: 10.1002/app.24419

A. Costantino, V. Pettarin, J. C. Viana, A. J. Pontes, A. S. Pouzada, P. Frontini, Microstructure of PP/clay nanocomposites produced by shear induced injection molding, Procedia Mater. Sci., 1, 34–43 (2012).


S. Arunachalam, M. G. Battisti, C. T. Vijayakumar, W. Freisenbichler, An investigation of mechanical and thermal properties of polymer clay nanocomposites con-taining different nanoclays, Macromol. Mater. Eng., 300 (10), 966–976 (2015). DOI: 10.1002/mame.201500107

D. D. J. Rousseaux, M. Sclavons, P. Godard, J. Marchand-Brynaert, Polypropylene/clay nanocomposites: An innovative one-pot process, Polym. Compos. 36 (4), 644–650 (2015). DOI: 10.1002/pc.22982

D. D. J. Rousseaux, I. N. Sallem, A. C. Baudouin, P. Godard, J. Marchand-Brynaert, M. Sclavons, Water-assisted extrusion of polypropylene/clay nanocomposites: a comprehensive study, Polymer, 52, 443–451 (2010).


S. Lee, J. Yoo, J. W. Lee, Water-assisted extrusion of polypropylene/clay nanocomposites in high shear condi-tion, J. Industr. Eng. Chem., 31, 317–322 (2015).


R. Klitkou, E. A. Jensen, J. C. Christiansen, Effect of multiple extrusions on the impact properties of polypro-pylene/clay nanocomposites, J. Appl. Polym. Sci., 126 (2), 620–630 (2012). DOI: 10.1002/app.36639

J. A. M. Ferreira, P. N. B. Reis, J. D. M. Costa, B. C. H. Richardson, M. O. W. Richardson, A study of the mechanical properties on polypropylene enhanced by surface treated nanoclays, Compos. Part B, 42, 1366–1372 (2011).


N. Soleimani, S. M. Khalili, R. E. Farsani, Z. H. Naseb, Mechanical properties of nanoclay reinforced polypro-pylene composites at cryogenic temperature, J. Reinf. Plast. Compos., 31, 967–976 (2012).


A. G. Mahmoud, Rheological characterization of melt compounded polypropylene/clay nanocompositers, Compos. Part B, 42, 1044–1047 (2011).


R. M. Boumbimba, K. Wang, N. Bahlouli, S. Ahzi, Y. Remond, F. Addiego, Experimental investigation and mi-cromechanical modeling of high strain rate compressive yield stress of a melt mixing polypropylene organoclay nanocomposites, Mech. Mater., 52, 58–68 (2012).


M. Canetti, S. T. Scafati, A. Cacciamani, F. Bertini, Influ-ence of hydrogenated oligo(cyclopentadiene) on the struc-ture and the thermal degradation of polypropylene-based nanocomposites, Polym. Degrad. Stab., 97, 81–87 (2012).


A. Fina, F. Cuttica, G. Camino, Ignition of polypropyl-ene/montmorillonite nanocomposites, Polym. Degrad. Stab., 97, 2619–2626 (2012).


V. Pettarin, F. Brun, J. C. Viana, A. S. Pouzada, P. M. Frontini, Toughness distribution in complex PP/nano¬clay injected mouldings, Compos. Sci. Technol., 74, 28–36 (2013).


K. Kalaitzdou, H. Fukushima, P. Askeland, L. T. Drzal, The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites, J. Mater. Sci., 43, 2895–2907 (2008).

DOI: 10.1007/s10853-007-1876-3

G. Bogoeva-Gaceva, L. Raka, Gj. Petruševski, Photo-oxidative behavior of isotactic-polypropylene/clay nanocomposites produced via single-step extrusion method at different cooling conditions. In: Polypropylene: Synthesis, Applications and Environmental Concerns, L. Paulino Silva, E. Fernandes Barbosa (Eds.), Nova Publisher, NY, 2013, Chapter 14, pp. 321–342.

G. Bogoeva-Gaceva, Lj. Raka, B. Dimzoski, Thermal stability of polypropylene/organo-clay nanocomposites produced in a single-step mixing procedure, Adv. Com-pos. Lett., 17, 161–164 (2008).

L. Raka, G. Bogoeva-Gaceva, J. Loos, Characterization of polypropylene/layered silicate nanocomposites prepared by single-step method, J. Therm. Anal. Calorim. 100 (2), 629–639 (2010).


J. Zheng, X. Lu, C. L. Toh, T. H. Zheng, C. He, Effects of clay on polymorphism of polypropylene in polypro-pylene/clay nanocomposites, J. Polym. Sci. Part B Polym. Phys., 42, 1810–1816 (2004).

DOI: 10.1002/polb.20043

H. E. Miltner, N. Grossiord, K. Lu, J. Loos, C. E. Koning, B. Van Mele, Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation, Macromolecules, 41, 5753–5762 (2008).

DOI: 10.1021/ma800643j

K. D. Pae, γ-α Solid-solid transition in isotactic polypro-pylene, J. Polym. Sci., A-2, Polym. Phys., 6, 657–663 (1968). DOI: 10.1002/pol.1968.160060401

J. L. Kardos, A. W. Christiansen, E. Baer, Structure of pressure-crystallized polypropylene, J. Polym Sci. Part B: Polym Phys., 4 (5), 777–788 (1966).


R. J. Samuels, Quantitative structural characterization of the melting behavior of isotactic polypropylene, J. Polym. Sci., 13, 1417–1446 (1975).

DOI: 10.1002/pol.1975.180130713

G. Guerra, V. Petraccone, P. Corradini, C. De-Rosa, R. Napolitano, B. Pirozzi, G. Giunchi, Crystalline order and melting behavior of isotactic polypropylene (α form), J. Polym. Sci. Polym. Phys., 22, 1029–1039 (1984).

DOI: 10.1002/pol.1984.180220608

Y. S. Yadav, P. C. Jain, Melting behaviour of isotactic polypropylene isothermally crystallized from the melt, Polymer, 27, 721–727 (1986).


A. Sorrentino, R. Pantani, G. Titomanlio, Kinetics of melting and characterization of the thermodynamic and kinetic properties of syndiotactic polystyrene, J. Polym. Sci. Part B: Polym. Phys., 45, 196–207 (2007).

DOI: 10.1002/polb.21039

S. Z. D. Cheng, J. J. Janimak, A. Zhang, Isotacticity effect on crystallization and melting in polypropylene fractions. 1. Crystalline structures and thermodynamic property changes, Polymer, 32, 648–655 (1991).


G. S. Venkatesh, A. Deb, A. Karmarkar, S. S. Chauhan Effect of nanoclay content and compatibilizer on viscoe-lastic properties of montmorillonite/polypropylene nanocomposites, Mater. Des., 37, 285–291 (2012).


Y. Q. Zhanga, J. H. Leeb, H. J. Jangb, C. W. Nahb, Pre-paring PP/clay nanocomposites using a swelling agent, Composites: Part B, 35, 133–138 (2004).


S. Mohanty, S. K. Nayak, Effect of clay exfoliation and organic modification on morphological, dynamic me-chanical, and thermal behavior of melt-compounded PA-6 nanocomposites, Polym. Comp. 28, 153–162 (2007). DOI: 10.1002/pc.20284

S. K. Sharma, S. K. Nayak, Surface modified clay/polypropylene (PP) nanocomposites: effect on physico-mechanical, thermal and morphological proper-ties, Polym. Degrad. Stabil., 94, 132–138 (2009).


S. G. Lei, S. V. Hoa, M. T. Ton-That, Effect of clay types on the processing and properties of polypropylene nanocomposites, Compos. Sci. Technol., 66, 1274–1279 (2006).


S. M. Lai, W. C. Chen, X. S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1 – The effect of compatibilizers on optical transmittance and mechanical properties, Composites Part A, 40, 754–765 (2009).


L. Raka, G. Bogoeva-Gaceva, K. Lu, J. Loos, Character-ization of latex based isotactic polypropylene/clay nanocomposites, Polymer, 50, 3739–3746 (2009).


R. D. K. Misra, Q. Yuan, P. K. C. Venkatsyrya, Me-chanics of nanoscale surface deformation in polypropyl-ene-clay nanocomposite, Mech. Mater., 45, 103–116 (2012).


S. Hambir, N. Bulakh, J. P. Jog, Polypropylene/Clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior, Polym. Eng. Sci., 42, 1800–1807 (2002).

DOI: 10.1002/pen.11072

S. K. Samal, S. K. Nayak, S. Mohanty, Polypropylene Nanocomposites: Effect of organo-modified layered sili-cates on mechanical, thermal & morphological perfor-mance, J. Thermoplast. Compos. Mater., 21, 243–263 (2008).


S. Yang, J. T. Tijerina, V. S. Diaz, K. Hernandez, K. Lozano, Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced poly-ethylene, Composite Part B, 38, 228–235 (2007).


P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa, A. Usuki, Influence of crystallization on intercalation, mor-phology, and mechanical properties of polypropylene/clay nanocomposites, Macromolecules, 35, 2042–2049 (2002). DOI: 10.1021/ma010852z

K. Prashantha, M. F. Lacrampe, P. Krawczak, Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties, EXPRESS Polym. Lett., 5 (4), 295–307 (2011).

DOI: 10.3144/expresspolymlett.2011.30




How to Cite

Bogoeva-Gaceva, G., Raka, L., & Sorrentino, A. (2017). The effect of matrix morphology on dynamic-mechanical properties of polypropylene/layered silicate nanocomposites. Macedonian Journal of Chemistry and Chemical Engineering, 36(2), 251–264.




Most read articles by the same author(s)