Thermal analysis of multi-walled carbon nanotubes material obtained by catalytic pyrolysis of polyethylene

Aleksandra Buzarovska, Viktor Stefov, Metodija Najdoski, Gordana Bogoeva-Gaceva

Abstract


Abstract

Chemical recycling of nonbiodegradable postconsumer polymers represents a promising route for conversion of waste plastics into feedstock for fuel, chemicals and materials production. Recently, waste plastics have been used as low cost feedstock for carbon nanotubes growth. In this work thermal behavior of multiwalled carbon nanotubes material (MWCNTs), obtained by catalytic pyrolysis of waste low-density polyethylene, has been analyzed. Following the improved protocol, developed few years ago for thermal analysis of CNTs, thermogravimetric analysis of the MWCNTs material has been performed using heating rates of 2-20 oC.min-1 and curve fitting method in an attempt to quantify the complex oxidation behavior of the material. It has been shown that competitive oxidation/combustion processes greatly influence the DTG curves and the number of fitted peaks.


Keywords


MWCNT, Thermogravimetry, Oxidation/combustion

Full Text:

PDF

References


N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Polymer nanocomposites based on functionalized carbon nanoptubes, Prog. Polym. Sci., 35, 837–867 (2010).

X. Wang, Z. Z. Yong, Q. W. Li, P. D. Bradford, W. Liu, D. S. Tucker, W. Cai, H.Wang, F. G. Yuan, Y. T Zhy, Ultrastrong, stiff and multifunctional carbon nanotube composites, Mater. Res. Lett., 1, 19–25 (2013).

M. Moniruzzaman, K. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules., 39, 5194–5205 ( 2006).

J. Prasek, J. Drbohlavova, J.Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis – Review, J. Mater. Chem., 21, 15872–15884 (2011).

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon., 49, 2581–2602 (2011).

D. Y. Kim, C. M. Yang, Y. S. Park, K. K. Kim, S. Y. Jeong, J. H. Han, Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition, Chem. Phys. Lett., 413, 135–141 (2005).

A. Lima, A. Masumeci, H-W. Liu, E. Waclawik, G. Silva, Purity evaluation and influence of carbon nanotubes on carbon nanotube/graphite thermal stability, J. Therm. Anal. Calorim., 97, 257–263 (2009).

L. S. K. Pang, J. D. Saxby, S. P. Chatfield, Thermogravimetric analysis of carbon nanotubes and nanoparticles, J. Phys. Chem., 97, 6941–6942 (1993).

S. Santangelo, G. Messina, G. Faggio, M. Lanza, A. Pistone, C. Milone, Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multiwalled carbon nanotubes, J. Mater. Sci., 45, 783–792 (2010).

G. S. B. McKee, K. S. Vecchio, Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes, J.Phys.Chem. B., 110, 1179–1186 (2006).

K. S. Dilip, P. K. Iyer, P. K. Giri, Diameter dependence of oxidative stability in multiwalled carbon nanotubes: role of defects and effect of vacuum annealing, J. Appl. Phys., 108, 084313 (2010).

J. Yang, R. Miranda, C. Roy, Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers, Poly. Deg. Stab., 73, 455–461 (2001).

B. Scheibe, E. Borowiak-Palen, R. J. Kalenczuk, Oxidation and reduction of multiwalled carbon nanotubes-preparation and characterization, Mater. Charact., 61, 185–191 (2010).

C. Zhuo, Y. A. Levendis, Upcycling waste plastics into carbon nanomaterials: A Review, J. Appl. Polym.Sci., 131 39931 (2014).

V.Stefov, M. Najdoski, G. Bogoeva-Gaceva, A. Buzarovska, Properties assessment of multiwalled carbon nanotubes. A comparative study, Synth. Met., 197, 159–167 (2014).

V. G. Pol, P. Thiyagarajan, Remediating plastic waste into carbon nanotubes, J. Environ. Monit., 12, 455–459 (2010).

S. Freiman, S. Hooker, K. Migler, S.Arepalli, Measurements Issues in Single-wall Carbon Nanotubes, National Institute of Standards and Technology, Special Publication, Washington , USA (2008).

GRAMS/32 Spectral Notebase, Version 4.10, Galactic Industries Corporation. (1996).

A. W. Masumeci, G. G. Silva, W. N. Martens, E. R. Waclawik, R. L. Frost, Thermal decomposition and electron microscopy studies of single-walled carbon nanotubes, J. Therm. Anal. Calorim., 88, 885–891 (2007).

O. M. Dunens, K. J. MacKenzie, A. T. Harris, Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts, Environ. Sci. Technol., 20, 7889–7894 (2009).

S.Arepalli, P. Nikolaev, O. Gorelik, V. G. Hajdjiev, W. A. Holmes, B. S. Files, L. Yowell, Protocol for the characterization of single-wall carbon nanotube material quality, Carbon., 42, 1783–1791 (2004).

NASA Tech Briefs (MSC-23507-1) 34 (2010). www.techbriefs.com/component/content/article/5-ntb/ tech-briefs/materials/7833

V. Ambroigi, G. Gentile, C. Ducati, M. C. Oliva, C. Carfagna, Multiwalled cabon nanotubes functionalized with maleated poly(propylene) by a dry mechano-chemical process, Polymer., 53, 291–299 (2012).

A. M. Mahajan, A. Kingon, A. Kukovecz, Z. Konya, P. M. Vilarinho, Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres, Mater. Lett., 90, 165–168 (2013).

G. Bogoeva-Gaceva, A. Grozdanov, E. Maeder, The effect of the interphase on kinetic peculiarities in model carbon fiber/epoxy composites studied by FTIR microscopy, Polimeri., 18 (5–6), 215–221 (1997).

G. B. S. McKee, C. P. Deck, K. S. Vecchio, Dimensional Control of multi-walled carbon nanotubes in floating catalysts CVD synthesis, Carbon., 47, 2085–2094 (2009).

R. Artiaga, R. Cao, S. Naya, B. Gonzales-Martin, H.L. Mier, A. Garcia, Separation of overlapping processes from TGA data and verification by EGA, Journal of ASTM International, Sept. 2002, Paper ID: available online at www.astm.org

H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702–1706 (1957).

H. Li, N. Zhao, C. He, C. Shi, X. Du, J. Li, Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane, Mater. Sci. Eng. A., 473, 355–359 (2008).




DOI: http://dx.doi.org/10.20450/mjcce.2015.620

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Aleksandra Buzarovska, Viktor Stefov, Metodija Najdoski, Gordana Bogoeva-Gaceva

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.