Infrared and Raman spectra of cubic form of magnesium caesium arsenate hexahydrate

Authors

  • Viktor Stefov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
  • Violeta Koleva Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia
  • Metodija Najdoski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
  • Adnan Cahil Pedagogical Faculty, Ss. Cyril and Methodius University, Skopje
  • Zuldjevat Abdija Faculty of Natural Sciences and Mathematics, University of Tetovo, Tetovo

DOI:

https://doi.org/10.20450/mjcce.2018.1477

Keywords:

Caesium magnesium arsenate hexahydrate, Cubic, Infrared spectra, Raman spectra Difference spectrum,

Abstract

Fourier transform infrared (FT-IR) spectra recorded at room temperature (RT) and at the boiling temperature of liquid nitrogen (LNT), as well as Raman spectra recorded at room temperature for the cubic polymorph of magnesium cesium arsenate hexahydrate (MgCsAsO4·6H2O) and its partially deuterated analogues, were interpreted with respect to the normal modes of the water molecules and the arsenate ions and water librations. The spectral characteristics of MgCsAsO4·6H2O were compared to the cubic form of the phosphate analogue. A spectral similarity between the two isostructural salts was established, except for the obvious differences due to the nature of the anions (AsO43–vs PO43–). The spectroscopic data for the uncoupled OD stretching mode of the matrix-isolated HDO molecules revealed that the hydrogen bonds formed in the arsenate salt were stronger than those in the phosphate. In the Raman spectrum of the protiated compound, only one very intensive band at 811 cm–1 was observed in the region of the stretching vibrations of the AsO43– ion, which was insensitive to deuteration. In accordance with the expectation, one band appeared in the same spectral range in the infrared spectra of the protiated and highly deuterated sample at 792 cm–1 and 810 cm–1, respectively, which can be attributed with certainty to the asymmetric stretching ν3(AsO4) modes.

References

V. Stefov, B. Šoptrajanov, F. Spirovski, I. Kuzmanovski, H. D. Lutz, B. Engelen, Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosp¬hate hexahydrate, J. Mol. Struct., 689, 1–10 (2004).

DOI: https://doi.org/10.1016/j.molstruc.2003.08.019

B. Šoptrajanov, V. Stefov, H. D. Lutz, B. Engelen, Infra-red and Raman spectra of magnesium ammonium phos-phate hexahydrate (struvite) and its isomorphous ana-logues. II. The O–H/N–H streching region, in: E. Faulques, D. Perry, A. Yeremenko (Eds.), NATO Sci-ence Volume: Spectroscopy of Emerging Materials, Kluwer, Dordrecht, 2004, p. 299–308.

V. Stefov, B. Šoptrajanov, I. Kuzmanovski, H. D. Lutz, B. Engelen, Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its iso-morphous analogues. III. Spectra of protiated and par-tially deuterated magnesium ammonium phosphate hexahydrate, J. Mol. Struct., 752, 60–67 (2005).

DOI: https://doi.org/10.1016/j.molstruc.2005.05.040

A. Cahil, M. Najdoski, V. Stefov, Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. IV. FTIR spectra of protiated and partially deuterated nickel am-monium phosphate hexahydrate and nickel potassium phosphate hexahydrate, J. Mol. Struct., 834–836, 408–413 (2007).

DOI: https://doi.org/10.1016/j.molstruc.2006.11.049

V. Stefov, B. Šoptrajanov, M. Najdoski, B. Engelen, H. D. Lutz, Infrared and Raman spectra of magnesium am-monium phosphate hexahydrate (struvite) and its iso-morphous analogues. V. Spectra of protiated and partially deuterated magnesium ammonium arsenate hexahydrate (arsenstruvite), J. Mol. Struct., 872, 87–92 (2008).

DOI: https://doi.org/10.1016/j.molstruc.2007.02.017

A. Cahil, B. Šoptrajanov, M. Najdoski, H. D. Lutz, B. Engelen, V. Stefov, Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. VI. FT-IR spectra of isomorphously isolated species. NN4+ ions isolated in MKPO4 •6H2O (M = Mg; Ni) and PO43- ions isolated in MgNH4AsO4 •6H2O, J. Mol. Struct., 876, 255–259 (2008).

DOI: https://doi.org/10.1016/j.molstruc.2007.06.023

V. Stefov, A. Cahil, B. Šoptrajanov, M. Najdoski, F. Spirovski, B. Engelen, H. D. Lutz, V. Koleva, Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. VII. Spectra of protiated and partially deuterated hexa-gonal magnesium caesium phosphate hexahydrate, J. Mol. Struct., 924–926, 100–106 (2009).

DOI: https://doi.org/10.1016/j.molstruc.2008.12.009

B. Šoptrajanov, A. Cahil, M. Najdoski, V. Koleva, V. Stefov, Infrared and Raman spectra of magnesium am-monium phosphate hexahydrate (struvite) and its iso-morphous analogues. VIII. Spectra of protiated and par-tially deuterated magnesium rubidium phosphate hexa-hydrate and magnesium thallium phosphate hexahydrate, Acta Chim. Slov., 58, 478–484 (2011).

V. Stefov, Z. Abdija, M. Najdoski, V. Koleva, V. M. Petruševski, T. Runčevski, R. E. Dinnebier and B. Šop-trajanov, Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its iso-morphous analogues. IX. Spectra of protiated and par-tially deuterated cubic magnesium caesium phosphate hexahydrate, Vib. Spectrosc., 68, 122–128 (2013).

DOI: https://doi.org/10.1016/j.vibspec.2013.06.003

Z. Abdija, M. Najdoski,V. Koleva, T. Runčevski, R. E. Dinnebier, B. Šoptrajanov, V. Stefov, Preparation, struc-tural, thermogravimetric and spectroscopic study of magnesium potassium arsenate hexahydrate, Z. Anorg. Allg. Chem., 640, 3177–3183 (2014).

DOI: https://doi.org/10.1002/zaac.201400265

V. Koleva, V. Stefov, M. Najdoski, A. Cahil, Thermal, spectral and microscopic studies of water-rich hydrate of the type Mg2KH(PO4)2•15H2O. Thermal transformations, Thermochim. Acta, 619, 20–25 (2015).

DOI: https://doi.org/10.1016/j.tca.2015.09.016

V. Koleva, V. Stefov, M. Najdoski, Characterization and thermal decomposition of Mg2KH(AsO4)2•15H2O, J. Therm. Anal. Calorim., 127, 1911–1919 (2017).

DOI: 10.1007/s10973-016-5782-2

V. Stefov, V. Koleva, M. Najdoski, Z. Abdija, A. Cahil, B. Šoptrajanov, Vibrational spectra of Mg2KH(XO4)2•15H2O (X = P, As) containing dimer units [H(XO4)2], Spectrochim. Acta A, 183, 387–394 (2017).

DOI: https://doi.org/10.1016/j.saa.2017.04.031

M. Pecovska-Gjorgjevich, V. Stefov, M. Najdoski, V. Koleva, S. Mentus, G. Petruševski, Mg2KH(XO4)2•15H2O (X = P, As) containing acidic dimer units: electrochemical impedance spectroscopy, IR spectroscopy and DSC studies, J. Alloys Compd., 746, 699–709 (2018).

DOI: https://doi.org/10.1016/j.jallcom.2018.02.348

W. Massa, O. V. Yakubovich, O. V. Dimitrova, A new cubic form of a caesium hexaaquamagnesium phosphate, Acta Crystallogr., C59, i83 (2003).

DOI: https://doi.org/10.1107/S0108270103011417

M. Weil, Redetermination of the hexagonal struvite ana-logue Cs[Mg(OH2)6](PO4), Acta Crystallogr., E64 i50 (2008). DOI: https://doi:10.1107/S1600536808023283

M. Weil, Redetermination of the cubic struvite analogue Cs[Mg(OH2)6](AsO4), Acta Crystallogr., E65, i2 (2009).

DOI: https://doi.org/10.1107/S1600536808043171

G. Carver, C. Dobe, T. B. Jensen, P. L. W. Tregenna-Piggott, S. Janssen, E. Bill, G. J. McIntyre, A. L. Barra, Spectroscopic, magnetochemical аnd crystallographic study of cesium iron phosphate hexahydrate: Charac-terization of the electronic structure of the iron(II) hexa-aqua cation in quasicubic environment, Inorg. Chem., 45, 4695–4705 (2006). DOI: 10.1021/ic0601889

GRAMS ANALYSTTM for PE-2000 FT-IR, Version 3.01B Level II, Galactic Industries, 1994.

GRAMS/32 Spectral Notebase, Version 4.10, Galactic Industries Corporation, 1996.

H. D. Lutz, Bonding and structure of water molecules in solid hydrates. Correlation of spectroscopic and structural data, Struct. Bonding, 69, 97–125 (1988).

M. Falk, O. Knop, in: Water: A Comprehensive Treatise, Vol. 2, F. Frank (Ed.), Plenum Press, New York, 1973.

V. P. Tayal, B. K. Srivastava, D. P. Khandewal, H. D. Bist, Librational modes of crystal water in hydrated sol-ids, Appl. Spectrosc. Rev., 16, 43–134 (1980).

DOI: https://doi.org/10.1080/05704928008081709

K. Ichida, Y. Kuroda, D. Nakamura, M. Kubo, Librational spectra of water molecules in some transition metal dichloride dihydrates, Spectrochim. Acta, 28A, 2433–2441 (1972).

DOI: https://doi.org/10.1016/0584-8539(72)80222-8

A. Eriksson, J. Lindgren, Model calculations of the vi-brations of bonded water molecules, J. Mol. Struct., 48, 417–430 (1978).

DOI: https://doi.org/10.1016/0022-2860(78)87252-4

H. D. Lutz, H. J. Kluppel, W. Pobitshka, B. Boosner, Assignment of the rotatory vibrations of water molecules in crystal hydrates, Z. Naturforch, 29B, 723–726 (1974). DOI: https://doi.org/10.1515/znb-1974-11-1206

T. Miyzawa, Infrared studies of the librations of water molecules in the solid matrices at 20 K, Bull. Chem. Soc. Jpn., 34, 202–205 (1961).

DOI: https://doi.org/10.1246/bcsj.34.202

H. D. Lutz, H. Christian, Librational modes of the water molecules in barium and strontium halide monohydrates, MX2•lH2O (M = Ba, Sr; X = Cl, Br, I), J. Mol. Struct., 101, 199–212 (1983).

DOI: https://doi.org/10.1016/0022-2860(83)85013-3

Downloads

Published

2018-11-19

How to Cite

Stefov, V., Koleva, V., Najdoski, M., Cahil, A., & Abdija, Z. (2018). Infrared and Raman spectra of cubic form of magnesium caesium arsenate hexahydrate. Macedonian Journal of Chemistry and Chemical Engineering, 37(2), 193–201. https://doi.org/10.20450/mjcce.2018.1477

Issue

Section

Spectroscopy

Most read articles by the same author(s)