Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. X. Vibrational spectra of magnesium rubidium arsenate hexahydrate and magnesium thallium arsenate hexahydrate

Authors

  • Viktor Stefov Instiute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
  • Violeta Koleva Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia
  • Metodija Najdoski Instiute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
  • Adnan Cahil Pedagogical Faculty, Ss. Cyril and Methodius University, Skopje
  • Zuldjevat Abdija Faculty of Natural Sciences and Mathematics, University of Tetovo, Tetovo

DOI:

https://doi.org/10.20450/mjcce.2020.2168

Keywords:

magnesium rubidium arsenate hexahydrate, magnesium thallium arsenate hexahydrate, infrared spectra, Raman spectra

Abstract

Polycrystalline samples of struvite-type MgRbAsO4·6H2O and MgTlAsO4·6H2O in both protiated and deuterated forms have been prepared for the first time by a precipitation method. Detailed analysis of their infrared (IR) and Raman (R) spectra recorded at room temperature (RT) and liquid nitrogen temperature (LNT) has been carried out and assignment of the vibrational bands has been proposed. The observed spectral pictures confirm the isostructurality of the two arsenate salts in agreement with the structural data. Similarly to other struvite-type and structure-related arsenate salts, the n1(AsO4) modes appear at higher frequencies than the n3(AsO4) vibrations. Low intensity and temperature sensitive bands that could be assigned as due to stretching Mg–O vibrations and n4(AsO4) modes are observed below 500 cm–1 in the LNT IR spectra of the studied compounds, at 472 cm–1 and 445 cm–1 for the rubidium analogue and at 470 cm–1 and 440 cm–1 for the thallium analogue. In the far-infrared and Raman spectra many bands are observed between 400 cm–1 and 200 cm–1, most of which are sensitive to deuteration, suggesting that they are not pure but coupled and can be related to n(Mg–Ow) modes. On the other hand, a band around 405 cm–1 in the spectra of the protiated compounds most probably is due to n2(AsO4) mode because of its frequency position, intensity and slight sensitivity to deuteration.

References

F. Abbona, R. Boistelle, Growth morphology and crystal habit of struvite crystals (MgNH4PO4·6H2O), J. Cryst. Growth, 46, 339–354 (1979).

DOI: https://doi.org/10.1016/0022-0248(79)90082-4

R. Flannigan, W. Ho Choy, B. Chew, D. Lange, Renal struvite stones–pathogenesis, microbiology, and management strategies, Nat. Rev. Urol., 11, 333–341(2014)

DOI: https://doi.org/10.1038/nrurol.2014.99

K.S. le Corre, E. Valsami-Jones, P. Hobbs, B. Jefferson, S.A. Parsons, Struvite crystallisation and recovery using a stainless steel structure as a seed material, Water Res., 41, 2449–2456 (2007).

DOI: https://doi.org/10.1016/j.watres.2007.03.002

K.S. le Corre, E. Valsami-Jones, P. Hobbs, B. Jefferson, S.A. Parsons, Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review, Crit. Rev. Environ. Sci. Technol., 39, 433–477 (2009).

DOI: https://doi.org/10.1080/10643380701640573

Md. M. Rahman, M. Amran, Md. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, C. SixRa, Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review, Arab. J. Chem., 7, 139–155 (2014).

DOI: https://doi.org/10.1016/j.arabjc.2013.10.007

B. Tansel, G. Lunn, O. Monje, Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions, Chemosphere, 194, 504–514 (2018).

DOI: https://doi.org/10.1016/j.chemosphere.2017.12.0

Y. Zhou, L. Cao, C. Lin, M. Luo, T. Yan, N. Ye, W. Cheng, J. Mater. Chem. C, 4, 9219–9226 (2016).

DOI: https://doi.org/10.1039/C6TC03295H

V. Stefov, B. Šoptrajanov, M. Najdoski, B. Engelen, H.D. Lutz, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. V. Spectra of protiated and partially deuterated magnesium ammonium arsenate hexahydrate (arsenstru¬vite), J. Mol. Struct., 872, 87–92 (2008).

DOI: https://doi.org/10.1016/j.molstruc.2007.02.017

Z. Abdija, M. Najdoski,V. Koleva, T. Runčevski,R.E. Dinnebier, B. Šoptrajanov, V. Stefov, Preparation, structural, thermogravimetric and spectroscopic study of magnesium potassium arsenate hexahydrate, Z. Anorg. Allg. Chem., 640, 3177–3183 (2014).

DOI: https://doi.org/10.1002/zaac.201400265

V. Koleva, V. Stefov, M. Najdoski, Characterization and thermal decomposition of Mg2KH(AsO4)2·15H2O, J. Therm. Anal. Calorim., 127, 1911–1919 (2017).

DOI: https://doi.org/10.1007/s10973-016-5782-2

V. Stefov, V. Koleva, M. Najdoski, Z. Abdija, A. Cahil, B. Šoptrajanov, Vibrational spectra of Mg2KH(XO4)2·15H2O (X = P, As) containing dimer units [H(XO4)2], Spectrochim. Acta A, 183, 387–394 (2017).

DOI: https://doi.org/10.1016/j.saa.2017.04.031

M. Pecovska-Gjorgjevich,V. Stefov, M. Najdoski, V. Koleva, S. Mentus, G. Petruševski, Mg2KH(XO4)2·15H2O (X = P, As) containing acidic dimer units: electrochemical impedance spectroscopy, IR spectroscopy and DSC studies, J. Alloys Compd., 746, 699–709 (2018).

DOI: https://doi.org/10.1016/j.jallcom.2018.02.348

V. Stefov, V. Koleva, M. Najdoski, Z. Abdija, A. Cahil, Infrared and Raman spectra of the cubic form of magnesium cesium arsenate hexahydrate, Maced. J. Chem. Engin., 37, 193-201 (2018).

DOI: http://dx.doi.org/10.20450/mjcce.2018.1477

M. Weil, The struvite tupe compounds M[Mg(H2O)6](XO4) where M = Rb, Tl and X = P, As, Cryst. Res. Technol., 43, 1286–1291 (2008).

DOI: https://doi.org/10.1002/crat.200800403

M. Weil, An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6, Z. Naturforsh. B, 74, 9–14 (2019).

DOI: https://doi.org/10.1515/znb-2018-0119

GRAMS ANALYSTTM for PE-2000 FT-IR, Version 3.01B Level II, Galactic Industries, 1994.

GRAMS/32 Spectral Notebase, Version 4.10, Galactic Industries Corporation, 1996.

V. Stefov, B. Šoptrajanov, F. Spirovski, I. Kuzmanovski, H.D. Lutz, B. Engelen, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phos¬p¬hate hexahydrate, J. Mol. Struct., 689, 1–10 (2004).

DOI: https://doi.org/10.1016/j.molstruc.2003.08.019

B. Šoptrajanov, V. Stefov, H.D. Lutz, B. Engelen, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. II. The O–H/N–H streching region, in: E. Faulques, D. Perry, A. Yeremenko (Eds.), NATO Science Volume: Spectroscopy of Emerging Materials, Kluwer, Dordrecht, 2004, p. 299–308.

V. Stefov, B. Šoptrajanov, I. Kuzmanovski, H.D. Lutz, B. Engelen, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phos¬p¬hate hexahydrate, J. Mol. Struct., 752, 60–67 (2005).

DOI: https://doi.org/10.1016/j.molstruc.2005.05.040

A. Cahil, M. Najdoski, V. Stefov, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. IV. FTIR spectra of protiated and partially deuterated nickel ammonium phosphate hexa¬¬¬hydrate and nickel potassium phos¬p-hate hexahydrate, J. Mol. Struct., 834-836, 408–413 (2007). DOI: https://doi.org/10.1016/j.molstruc.2006.11.049

A. Cahil, B. Šoptrajanov, M. Najdoski, H.D. Lutz, B. Engelen, V. Stefov, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. VI. FT-IR spectra of isomorphously isolated species. NN4+ ions isolated in MKPO4 · 6H2O (M = Mg; Ni) and PO43- ions isolated in MgNH4AsO4 · 6H2O, J. Mol. Struct., 876, 255–259 (2008).

DOI: https://doi.org/10.1016/j.molstruc.2007.06.023

V. Stefov, A. Cahil, B. Šoptrajanov, M. Najdoski, F. Spirovski, B. Engelen, H.D. Lutz, V. Koleva, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. VII. Spectra of protiated and partially deuterated hexagonal magnesium caesium phosphate hexahydrate, J. Mol. Struct., 924-926, 100–106 (2009).

DOI: https://doi.org/10.1016/j.molstruc.2008.12.009

B. Šoptrajanov, A. Cahil, M. Najdoski, V. Koleva and V. Stefov, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. VIII. Spectra of protiated and partially deuterated magnesium rubidium phosphate hexahydrate and magnesium thallium phos¬p¬hate hexahydrate, Acta Chim. Slov., 58, 478–484 (2011).

V. Stefov, Z. Abdija, M. Najdoski, V. Koleva, V.M. Petruševski, T. Runčevski, R.E. Dinnebier and B. Šoptrajanov, Infrared and Raman spectra of magne¬si¬um ammo¬nium phosphate hexahydrate (struvite) and its iso¬mor¬phous analogues. IX. Spectra of protiated and partially deuterated cubic magnesium caesium phosphate hexahydrate, Vib. Spectrosc., 68, 122–128 (2013).

DOI: https://doi.org/10.1016/j.vibspec.2013.06.003

V.P. Tayal, B.K. Srivastava, D.P. Khandewal, H.D. Bist, Librational modes of crystal water in hydrated solids, Appl. Spectrosc. Rev., 16, 43–134 (1980).

DOI: https://doi.org/10.1080/05704928008081709

W. Martens, R.L. Frost, J.T. Kloprogge, Raman spectroscopy of synthetic erythrite, partially dehydrated erythrite and hydrothermally synthesized dehydrated erythrite, J. Raman Spectrosc., 34, 90–95 (2003).

DOI: https://doi.org/10.1002/jrs.958

W.N. Martens, J.T. Kloprogge, R.L. Frost, L. Rintoul, Single‐crystal Raman study of erythrite, Co3(AsO4)2·8H2O, J. Raman Spectrosc., 35, 208–216 (2004).

DOI: https://doi.org/10.1002/jrs.1136

T. Mihajlović, E. Libowitzky, H. Effenberger, Synthesis, crystal structure, infrared and Raman spectra of Sr5(As2O7)2(AsO3OH), J. Solid State Chem., 177, 3963–3970 (2004).

DOI: https://doi.org/10.1016/j.jssc.2004.06.036

R.L. Frost, R. Scholz, An. López, Y. Xi, Raman spectroscopy of the arsenate minerals maxwellite and in comparison with tilasite, Spectrochim. Acta A, 123, 416–420 (2014).

DOI: https://doi.org/10.1016/j.saa.2013.12.081

P. Makreski, J. Todorov, V. Makrievski, Lj. Pejov, G. Jovanovski, Vibrational spectra of the rare‐occurring complex hydrogenarsenate minerals pharmacolite, picropharmacolite, andvladimirite: Dominance of Raman over IR spectroscopy todiscriminate arsenate and hydrogen arsenate units, J Raman Spectrosc., 49, 747–763 (2018).

DOI: https://doi.org/10.1002/jrs.5324

Downloads

Published

2020-12-11

How to Cite

Stefov, V., Koleva, V., Najdoski, M., Cahil, A., & Abdija, Z. (2020). Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. X. Vibrational spectra of magnesium rubidium arsenate hexahydrate and magnesium thallium arsenate hexahydrate. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 239–249. https://doi.org/10.20450/mjcce.2020.2168

Issue

Section

Spectroscopy

Most read articles by the same author(s)